Cargando…
Discovery of log-periodic oscillations in ultraquantum topological materials
Quantum oscillations are usually the manifestation of the underlying physical nature in condensed matter systems. Here, we report a new type of log-periodic quantum oscillations in ultraquantum three-dimensional topological materials. Beyond the quantum limit (QL), we observe the log-periodic oscill...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214643/ https://www.ncbi.nlm.nih.gov/pubmed/30406205 http://dx.doi.org/10.1126/sciadv.aau5096 |
Sumario: | Quantum oscillations are usually the manifestation of the underlying physical nature in condensed matter systems. Here, we report a new type of log-periodic quantum oscillations in ultraquantum three-dimensional topological materials. Beyond the quantum limit (QL), we observe the log-periodic oscillations involving up to five oscillating cycles (five peaks and five dips) on the magnetoresistance of high-quality single-crystal ZrTe(5), virtually showing the clearest feature of discrete scale invariance (DSI). Further, theoretical analyses show that the two-body quasi-bound states can be responsible for the DSI feature. Our work provides a new perspective on the ground state of topological materials beyond the QL. |
---|