Cargando…
Mining latent information in PTSD psychometrics with fuzziness for effective diagnoses
The options of traditional self-report rating-scale, like the PTSD Checklist Civilian (PCL-C) scale, have no clear boundaries which might cause considerable biases and low effectiveness. This research aimed to explore the feasibility of using fuzzy set in the data processing to promote the screening...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214927/ https://www.ncbi.nlm.nih.gov/pubmed/30389985 http://dx.doi.org/10.1038/s41598-018-34573-7 |
Sumario: | The options of traditional self-report rating-scale, like the PTSD Checklist Civilian (PCL-C) scale, have no clear boundaries which might cause considerable biases and low effectiveness. This research aimed to explore the feasibility of using fuzzy set in the data processing to promote the screening effectiveness of PCL-C in real-life practical settings. The sensitivity, specificity, Youden’s index etc., of PCL-C at different cutoff lines (38, 44 and 50 respectively) were analyzed and compared with those of fuzzy set approach processing. In practice, no matter the cutoff line of the PCL-C was set at 50, 44 or 38, the PCL-C showed good specificity, but failed to exhibit good sensitivity and screening effectiveness. The highest sensitivity was at 65.22%, with Youden’s index being 0.64. After fuzzy processing, the fuzzy-PCL-C’s sensitivity increased to 91.30%, Youden’s index rose to 0.91, having seen marked augmentation. In conclusion, this study indicates that fuzzy set can be used in the data processing of psychiatric scales which have no clear definition standard of the options to improve the effectiveness of the scales. |
---|