Cargando…
No significant boron in the hydrated mantle of most subducting slabs
Boron has become the principle proxy for the release of seawater-derived fluids into arc volcanics, linked to cross-arc variations in boron content and isotopic ratio. Because all ocean floor serpentinites so far analysed are strongly enriched in boron, it is generally assumed that if the uppermost...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214984/ https://www.ncbi.nlm.nih.gov/pubmed/30389930 http://dx.doi.org/10.1038/s41467-018-07064-6 |
Sumario: | Boron has become the principle proxy for the release of seawater-derived fluids into arc volcanics, linked to cross-arc variations in boron content and isotopic ratio. Because all ocean floor serpentinites so far analysed are strongly enriched in boron, it is generally assumed that if the uppermost slab mantle is hydrated, it will also be enriched in boron. Here we present the first measurements of boron and boron isotopes in fast-spread oceanic gabbros in the Pacific, showing strong take-up of seawater-derived boron during alteration. We show that in one-pass hydration of the upper mantle, as proposed for bend fault serpentinisation, boron will not reach the hydrated slab mantle. Only prolonged hydrothermal circulation, for example in a long-lived transform fault, can add significant boron to the slab mantle. We conclude that hydrated mantle in subducting slabs will only rarely contribute to boron enrichment in arc volcanics, or to deep mantle recycling. |
---|