Cargando…
Forecasting extreme atmospheric events with a recurrence-interval-analysis-based autoregressive conditional duration model
With most city dwellers in China subjected to air pollution, forecasting extreme air pollution spells is of paramount significance in both scheduling outdoor activities and ameliorating air pollution. In this paper, we integrate the autoregressive conditional duration model (ACD) with the recurrence...
Autores principales: | Dai, Yue-Hua, Jiang, Zhi-Qiang, Zhou, Wei-Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214986/ https://www.ncbi.nlm.nih.gov/pubmed/30389982 http://dx.doi.org/10.1038/s41598-018-34584-4 |
Ejemplares similares
-
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
Forecasting COVID-19: Vector Autoregression-Based Model
por: Rajab, Khairan, et al.
Publicado: (2022) -
AA-forecast: anomaly-aware forecast for extreme events
por: Farhangi, Ashkan, et al.
Publicado: (2023) -
Methodology for forecasting electricity consumption by Grey and Vector autoregressive models
por: Guefano, Serge, et al.
Publicado: (2021) -
Autoregressive Affective Language Forecasting: A Self-Supervised Task
por: Matero, Matthew, et al.
Publicado: (2020)