Cargando…

Remotely-sensed productivity clusters capture global biodiversity patterns

Ecological regionalisations delineate areas of similar environmental conditions, ecological processes, and biotic communities, and provide a basis for systematic conservation planning and management. Most regionalisations are made based on subjective criteria, and can not be readily revised, leading...

Descripción completa

Detalles Bibliográficos
Autores principales: Coops, Nicholas C., Kearney, Sean P., Bolton, Douglas K., Radeloff, Volker C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215014/
https://www.ncbi.nlm.nih.gov/pubmed/30389971
http://dx.doi.org/10.1038/s41598-018-34162-8
Descripción
Sumario:Ecological regionalisations delineate areas of similar environmental conditions, ecological processes, and biotic communities, and provide a basis for systematic conservation planning and management. Most regionalisations are made based on subjective criteria, and can not be readily revised, leading to outstanding questions with respect to how to optimally develop and define them. Advances in remote sensing technology, and big data analysis approaches, provide new opportunities for regionalisations, especially in terms of productivity patterns through both photosynthesis and structural surrogates. Here we show that global terrestrial productivity dynamics can be captured by Dynamics Habitat Indices (DHIs) and we conduct a regionalisation based on the DHIs using a two-stage multivariate clustering approach. Encouragingly, the derived clusters are more homogeneous in terms of species richness of three key taxa, and of canopy height, than a conventional regionalisation. We conclude with discussing the benefits of these remotely derived clusters for biodiversity assessments and conservation. The clusters based on the DHIs explained more variance, and greater within-region homogeneity, compared to conventional regionalisations for species richness of both amphibians and mammals, and were comparable in the case of birds. Structure as defined by global tree height was also better defined by productivity driven clusters than conventional regionalisations. These results suggest that ecological regionalisations based on remotely sensed metrics have clear advantages over conventional regionalisations for certain applications, and they are also more easily updated.