Cargando…

Mapping Shunting Paths at the Surface of Cu(2)ZnSn(S,Se)(4) Films via Energy-Filtered Photoemission Microscopy

The performance of Cu(2)ZnSn(S,Se)(4) thin-film solar cells, commonly referred to as kesterite or CZTSSe, is limited by open-circuit voltage (V(OC)) values less than 60% of the maximum theoretical limit. In the present study, we employ energy-filtered photoemission microscopy to visualize nanoscale...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiwari, Devendra, Cattelan, Mattia, Harniman, Robert L., Sarua, Andrei, Abbas, Ali, Bowers, Jake W., Fox, Neil A., Fermin, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215027/
https://www.ncbi.nlm.nih.gov/pubmed/30384132
http://dx.doi.org/10.1016/j.isci.2018.10.004
Descripción
Sumario:The performance of Cu(2)ZnSn(S,Se)(4) thin-film solar cells, commonly referred to as kesterite or CZTSSe, is limited by open-circuit voltage (V(OC)) values less than 60% of the maximum theoretical limit. In the present study, we employ energy-filtered photoemission microscopy to visualize nanoscale shunting paths in solution-processed CZTSSe films, which limit the V(OC) of cells to approximately 400 mV. These studies unveil areas of local effective work function (LEWF) narrowly distributed around 4.9 eV, whereas other portions show hotspots with LEWF as low as 4.2 eV. Localized valence band spectra and density functional theory calculations allow rationalizing the LEWF maps in terms of the CZTSSe effective work function broadened by potential energy fluctuations and nanoscale Sn(S,Se) phases.