Cargando…
Midwave FTIR-Based Remote Surface Temperature Estimation Using a Deep Convolutional Neural Network in a Dynamic Weather Environment
Remote measurements of thermal radiation are very important for analyzing the solar effect in various environments. This paper presents a novel real-time remote temperature estimation method by applying a deep learning-based regression method to midwave infrared hyperspectral images. A conventional...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215119/ https://www.ncbi.nlm.nih.gov/pubmed/30424428 http://dx.doi.org/10.3390/mi9100495 |
Sumario: | Remote measurements of thermal radiation are very important for analyzing the solar effect in various environments. This paper presents a novel real-time remote temperature estimation method by applying a deep learning-based regression method to midwave infrared hyperspectral images. A conventional remote temperature estimation using only one channel or multiple channels cannot provide a reliable temperature in dynamic weather environments because of the unknown atmospheric transmissivities. This paper solves the issue (real-time remote temperature measurement with high accuracy) with the proposed surface temperature-deep convolutional neural network (ST-DCNN) and a hyperspectral thermal camera (TELOPS HYPER-CAM MWE). The 27-layer ST-DCNN regressor can learn and predict the underlying temperatures from 75 spectral channels. Midwave infrared hyperspectral image data of a remote object were acquired three times a day (10:00, 13:00, 15:00) for 7 months to consider the dynamic weather variations. The experimental results validate the feasibility of the novel remote temperature estimation method in real-world dynamic environments. In addition, the thermal stealth properties of two types of paint were demonstrated by the proposed ST-DCNN as a real-world application. |
---|