Cargando…
Bending Limit Tests for Ultra-Thin Liquid Crystal Polymer Substrate Based on Flexible Microwave Components
In this paper, bending limit tests for one ultra-thin liquid crystal polymer (LCP) substrate (Rogers 3850) based on the mechanical properties of flexible microwave microstrip components are presented. First, a set of 50 Ω microstrip lines, a band-pass filter, and a stepped impedance filter in X-band...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215279/ https://www.ncbi.nlm.nih.gov/pubmed/30424464 http://dx.doi.org/10.3390/mi9100531 |
Sumario: | In this paper, bending limit tests for one ultra-thin liquid crystal polymer (LCP) substrate (Rogers 3850) based on the mechanical properties of flexible microwave microstrip components are presented. First, a set of 50 Ω microstrip lines, a band-pass filter, and a stepped impedance filter in X-band, are designed by using double clapped LCPs with 50 μm thickness of substrate and 18 μm thickness of copper, which is fabricated by conventional photolithography. Then, the limit tests of the flexibility of the LCP microwave microstrip components are presented, and the range of the bending limit radius, from 1 mm to 0.75 mm, is demonstrated from the testing results. It is found that the cause for component failure is fracture of the copper (18 μm thickness) laminate, according to the bending limit test experiments. Finally, the analysis of the reasons for the collapse of the microwave components, under bending situations, is explored. The results from this work would be useful for further designs of the flexible microwave devices and systems on LCP substrates, with compact sizes and good performance. |
---|