Cargando…
Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays
We propose and numerically demonstrate two novel terahertz absorbers made up of periodic single- and double-layer decussate graphene ribbon arrays. The simulated results show that the proposed absorbers have narrowband near-unity terahertz absorption with ultra-wide frequency reconfiguration and ang...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215309/ https://www.ncbi.nlm.nih.gov/pubmed/30322199 http://dx.doi.org/10.3390/nano8100834 |
_version_ | 1783368128058621952 |
---|---|
author | Ye, Longfang Zeng, Fang Zhang, Yong Xu, Xiong Yang, Xiaofan Liu, Qing Huo |
author_facet | Ye, Longfang Zeng, Fang Zhang, Yong Xu, Xiong Yang, Xiaofan Liu, Qing Huo |
author_sort | Ye, Longfang |
collection | PubMed |
description | We propose and numerically demonstrate two novel terahertz absorbers made up of periodic single- and double-layer decussate graphene ribbon arrays. The simulated results show that the proposed absorbers have narrowband near-unity terahertz absorption with ultra-wide frequency reconfiguration and angular stability. By tuning the Fermi level of graphene ribbons, the over 90% absorbance peak frequency of the absorber with single-layer graphene structure can be flexibly adjusted from 6.85 to 9.85 THz for both the transverse magnetic (TM) and transverse electric (TE) polarizations. This absorber with single-layer graphene demonstrates excellent angular stability with the absorbance peaks of the reconfigurable absorption bands remaining over 99.8% in a wide angle of incidence ranging from 0 to 70°. The tuning frequency can be significantly enhanced by using the absorber with double-layer graphene structure from 5.50 to 11.28 THz and 5.62 to 10.65 THz, approaching two octaves under TM and TE polarizations, respectively. The absorbance peaks of the reconfigurable absorption band of this absorber for both polarizations maintain over 70%, even at a large angle of incidence up to 70°. Furthermore, an analytical fitting model is also proposed to accurately predict the absorbance peak frequencies for this variety of absorbers. Benefitting from these attractive properties, the proposed absorber may have great potential applications in tunable terahertz trapping, detecting, sensing, and various terahertz optoelectronic devices. |
format | Online Article Text |
id | pubmed-6215309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62153092018-11-14 Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays Ye, Longfang Zeng, Fang Zhang, Yong Xu, Xiong Yang, Xiaofan Liu, Qing Huo Nanomaterials (Basel) Article We propose and numerically demonstrate two novel terahertz absorbers made up of periodic single- and double-layer decussate graphene ribbon arrays. The simulated results show that the proposed absorbers have narrowband near-unity terahertz absorption with ultra-wide frequency reconfiguration and angular stability. By tuning the Fermi level of graphene ribbons, the over 90% absorbance peak frequency of the absorber with single-layer graphene structure can be flexibly adjusted from 6.85 to 9.85 THz for both the transverse magnetic (TM) and transverse electric (TE) polarizations. This absorber with single-layer graphene demonstrates excellent angular stability with the absorbance peaks of the reconfigurable absorption bands remaining over 99.8% in a wide angle of incidence ranging from 0 to 70°. The tuning frequency can be significantly enhanced by using the absorber with double-layer graphene structure from 5.50 to 11.28 THz and 5.62 to 10.65 THz, approaching two octaves under TM and TE polarizations, respectively. The absorbance peaks of the reconfigurable absorption band of this absorber for both polarizations maintain over 70%, even at a large angle of incidence up to 70°. Furthermore, an analytical fitting model is also proposed to accurately predict the absorbance peak frequencies for this variety of absorbers. Benefitting from these attractive properties, the proposed absorber may have great potential applications in tunable terahertz trapping, detecting, sensing, and various terahertz optoelectronic devices. MDPI 2018-10-14 /pmc/articles/PMC6215309/ /pubmed/30322199 http://dx.doi.org/10.3390/nano8100834 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ye, Longfang Zeng, Fang Zhang, Yong Xu, Xiong Yang, Xiaofan Liu, Qing Huo Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays |
title | Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays |
title_full | Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays |
title_fullStr | Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays |
title_full_unstemmed | Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays |
title_short | Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays |
title_sort | frequency-reconfigurable wide-angle terahertz absorbers using single- and double-layer decussate graphene ribbon arrays |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215309/ https://www.ncbi.nlm.nih.gov/pubmed/30322199 http://dx.doi.org/10.3390/nano8100834 |
work_keys_str_mv | AT yelongfang frequencyreconfigurablewideangleterahertzabsorbersusingsingleanddoublelayerdecussategrapheneribbonarrays AT zengfang frequencyreconfigurablewideangleterahertzabsorbersusingsingleanddoublelayerdecussategrapheneribbonarrays AT zhangyong frequencyreconfigurablewideangleterahertzabsorbersusingsingleanddoublelayerdecussategrapheneribbonarrays AT xuxiong frequencyreconfigurablewideangleterahertzabsorbersusingsingleanddoublelayerdecussategrapheneribbonarrays AT yangxiaofan frequencyreconfigurablewideangleterahertzabsorbersusingsingleanddoublelayerdecussategrapheneribbonarrays AT liuqinghuo frequencyreconfigurablewideangleterahertzabsorbersusingsingleanddoublelayerdecussategrapheneribbonarrays |