Cargando…
GLMdenoise improves multivariate pattern analysis of fMRI data
GLMdenoise is a denoising technique for task-based fMRI. In GLMdenoise, estimates of spatially correlated noise (which may be physiological, instrumental, motion-related, or neural in origin) are derived from the data and incorporated as nuisance regressors in a general linear model (GLM) analysis....
Autores principales: | Charest, Ian, Kriegeskorte, Nikolaus, Kay, Kendrick N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215334/ https://www.ncbi.nlm.nih.gov/pubmed/30170148 http://dx.doi.org/10.1016/j.neuroimage.2018.08.064 |
Ejemplares similares
-
GLMdenoise: a fast, automated technique for denoising task-based fMRI data
por: Kay, Kendrick N., et al.
Publicado: (2013) -
Prospective motion correction improves the sensitivity of fMRI pattern decoding
por: Huang, Pei, et al.
Publicado: (2018) -
Improving the accuracy of single-trial fMRI response estimates using GLMsingle
por: Prince, Jacob S, et al.
Publicado: (2022) -
Local opposite orientation preferences in V1: fMRI sensitivity to fine-grained pattern information
por: Alink, Arjen, et al.
Publicado: (2017) -
Adjudicating between face-coding models with individual-face fMRI responses
por: Carlin, Johan D., et al.
Publicado: (2017)