Cargando…
Adaptively capturing the heterogeneity of expression for cancer biomarker identification
BACKGROUND: Identifying cancer biomarkers from transcriptomics data is of importance to cancer research. However, transcriptomics data are often complex and heterogeneous, which complicates the identification of cancer biomarkers in practice. Currently, the heterogeneity still remains a challenge fo...
Autores principales: | Xie, Xin-Ping, Xie, Yu-Feng, Liu, Yi-Tong, Wang, Hong-Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215657/ https://www.ncbi.nlm.nih.gov/pubmed/30390627 http://dx.doi.org/10.1186/s12859-018-2437-2 |
Ejemplares similares
-
A regulation probability model-based meta-analysis of multiple transcriptomics data sets for cancer biomarker identification
por: Xie, Xin-Ping, et al.
Publicado: (2017) -
Quasi-linear score for capturing heterogeneous structure in biomarkers
por: Omae, Katsuhiro, et al.
Publicado: (2017) -
Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis
por: Leek, Jeffrey T, et al.
Publicado: (2007) -
Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell
por: Pascual-Ahuir, Amparo, et al.
Publicado: (2020) -
DNA methylation profiles capturing breast cancer heterogeneity
por: Chen, Xiao, et al.
Publicado: (2019)