Cargando…
Fully-Automatic Synapse Prediction and Validation on a Large Data Set
Extracting a connectome from an electron microscopy (EM) data set requires identification of neurons and determination of connections (synapses) between neurons. As manual extraction of this information is very time-consuming, there has been extensive research efforts to automatically segment the ne...
Autores principales: | Huang, Gary B., Scheffer, Louis K., Plaza, Stephen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215860/ https://www.ncbi.nlm.nih.gov/pubmed/30420797 http://dx.doi.org/10.3389/fncir.2018.00087 |
Ejemplares similares
-
Analysis Tools for Large Connectomes
por: Scheffer, Louis K.
Publicado: (2018) -
Verifying, Challenging, and Discovering New Synapses Among Fully EM-Reconstructed Neurons in the Leech Ganglion
por: Pipkin, Jason E., et al.
Publicado: (2018) -
A Fully Automatic Framework for Parkinson’s Disease Diagnosis by Multi-Modality Images
por: Xu, Jiahang, et al.
Publicado: (2019) -
The Stability of Glutamatergic Synapses Is Independent of Activity Level, but Predicted by Synapse Size
por: Quinn, Dylan P., et al.
Publicado: (2019) -
A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system
por: Shinomiya, Kazunori, et al.
Publicado: (2015)