Cargando…
BERMP: a cross-species classifier for predicting m(6)A sites by integrating a deep learning algorithm and a random forest approach
N(6)-methyladenosine (m(6)A) is a prevalent RNA methylation modification involved in several biological processes. Hundreds or thousands of m(6)A sites identified from different species using high-throughput experiments provides a rich resource to construct in-silico approaches for identifying m(6)A...
Autores principales: | Huang, Yu, He, Ningning, Chen, Yu, Chen, Zhen, Li, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6216033/ https://www.ncbi.nlm.nih.gov/pubmed/30416381 http://dx.doi.org/10.7150/ijbs.27819 |
Ejemplares similares
-
Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites
por: Chen, Zhen, et al.
Publicado: (2018) -
Prediction of Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR and IFS
por: Li, Bi-Qing, et al.
Publicado: (2012) -
DeepKhib: A Deep-Learning Framework for Lysine 2-Hydroxyisobutyrylation Sites Prediction
por: Zhang, Luna, et al.
Publicado: (2020) -
A deep learning algorithm to translate and classify cardiac electrophysiology
por: Aghasafari, Parya, et al.
Publicado: (2021) -
Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations
por: Agajanian, Steve, et al.
Publicado: (2019)