Cargando…

A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host

BACKGROUND: Survival in temporally or spatially changing environments is a prerequisite for the perpetuation of a given species. In addition to genetic variation, the role of epigenetic processes is crucial in the persistence of organisms. For instance, mechanisms such as developmental flexibility e...

Descripción completa

Detalles Bibliográficos
Autores principales: Leung, Christelle, Breton, Sophie, Angers, Bernard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6216994/
https://www.ncbi.nlm.nih.gov/pubmed/30405974
http://dx.doi.org/10.7717/peerj.5896
_version_ 1783368310608363520
author Leung, Christelle
Breton, Sophie
Angers, Bernard
author_facet Leung, Christelle
Breton, Sophie
Angers, Bernard
author_sort Leung, Christelle
collection PubMed
description BACKGROUND: Survival in temporally or spatially changing environments is a prerequisite for the perpetuation of a given species. In addition to genetic variation, the role of epigenetic processes is crucial in the persistence of organisms. For instance, mechanisms such as developmental flexibility enable the adjustment of the phenotype of a given individual to changing conditions throughout its development. However, the extent of factors other than genetic variability, like epigenetic processes, in the production of alternative phenotype and the consequences in realized ecological niches is still unclear. METHODS: In this study, we compared the extent of realized niches between asexual and sexual individuals from different environments. We used a trait-based ecology approach exploiting trophic and locomotive structures to infer the environment that each biotype actually used. More specifically, we compared the morphology of the all-female clonal and sperm-dependent fish Chrosomus eos-neogaeus to that of their sexual host species C. eos in common garden and natural conditions. RESULTS: Transfer from natural to controlled conditions resulted in a similar shift in measured morphology for clonal and sexual individuals suggesting comparable level of flexibility in both kinds of organisms. However, clonal, but not sexual, individuals displayed a consistent phenotype when reared in uniform conditions indicating that in absence of genetic variation, one phenotype corresponds to one niche. This contrasted with results from natural conditions where clones were morphologically as variable as sexual individuals within a sampled site. In addition, similar phenotypic changes for both clonal and sexual individuals were observed among the majority of sampled sites, indicating that they responded similarly to the same environments. DISCUSSION: Our results indicated that clones can efficiently use different niches and may evolve in a range of environmental conditions comparable to that of a sexual species, thus underlying the importance of factors other than genetic variability, like epigenetic processes, for coping with environmental heterogeneity.
format Online
Article
Text
id pubmed-6216994
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-62169942018-11-07 A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host Leung, Christelle Breton, Sophie Angers, Bernard PeerJ Ecology BACKGROUND: Survival in temporally or spatially changing environments is a prerequisite for the perpetuation of a given species. In addition to genetic variation, the role of epigenetic processes is crucial in the persistence of organisms. For instance, mechanisms such as developmental flexibility enable the adjustment of the phenotype of a given individual to changing conditions throughout its development. However, the extent of factors other than genetic variability, like epigenetic processes, in the production of alternative phenotype and the consequences in realized ecological niches is still unclear. METHODS: In this study, we compared the extent of realized niches between asexual and sexual individuals from different environments. We used a trait-based ecology approach exploiting trophic and locomotive structures to infer the environment that each biotype actually used. More specifically, we compared the morphology of the all-female clonal and sperm-dependent fish Chrosomus eos-neogaeus to that of their sexual host species C. eos in common garden and natural conditions. RESULTS: Transfer from natural to controlled conditions resulted in a similar shift in measured morphology for clonal and sexual individuals suggesting comparable level of flexibility in both kinds of organisms. However, clonal, but not sexual, individuals displayed a consistent phenotype when reared in uniform conditions indicating that in absence of genetic variation, one phenotype corresponds to one niche. This contrasted with results from natural conditions where clones were morphologically as variable as sexual individuals within a sampled site. In addition, similar phenotypic changes for both clonal and sexual individuals were observed among the majority of sampled sites, indicating that they responded similarly to the same environments. DISCUSSION: Our results indicated that clones can efficiently use different niches and may evolve in a range of environmental conditions comparable to that of a sexual species, thus underlying the importance of factors other than genetic variability, like epigenetic processes, for coping with environmental heterogeneity. PeerJ Inc. 2018-11-02 /pmc/articles/PMC6216994/ /pubmed/30405974 http://dx.doi.org/10.7717/peerj.5896 Text en © 2018 Leung et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Ecology
Leung, Christelle
Breton, Sophie
Angers, Bernard
A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host
title A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host
title_full A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host
title_fullStr A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host
title_full_unstemmed A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host
title_short A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host
title_sort trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host
topic Ecology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6216994/
https://www.ncbi.nlm.nih.gov/pubmed/30405974
http://dx.doi.org/10.7717/peerj.5896
work_keys_str_mv AT leungchristelle atraitbasedecologytoassesstheacclimationofaspermdependentclonalfishcomparedtoitssexualhost
AT bretonsophie atraitbasedecologytoassesstheacclimationofaspermdependentclonalfishcomparedtoitssexualhost
AT angersbernard atraitbasedecologytoassesstheacclimationofaspermdependentclonalfishcomparedtoitssexualhost
AT leungchristelle traitbasedecologytoassesstheacclimationofaspermdependentclonalfishcomparedtoitssexualhost
AT bretonsophie traitbasedecologytoassesstheacclimationofaspermdependentclonalfishcomparedtoitssexualhost
AT angersbernard traitbasedecologytoassesstheacclimationofaspermdependentclonalfishcomparedtoitssexualhost