Cargando…

Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria

In natural environments, microbes are typically non‐dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient‐rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Sekar, Karthik, Rusconi, Roberto, Sauls, John T, Fuhrer, Tobias, Noor, Elad, Nguyen, Jen, Fernandez, Vicente I, Buffing, Marieke F, Berney, Michael, Jun, Suckjoon, Stocker, Roman, Sauer, Uwe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217170/
https://www.ncbi.nlm.nih.gov/pubmed/30397005
http://dx.doi.org/10.15252/msb.20188623
_version_ 1783368320042401792
author Sekar, Karthik
Rusconi, Roberto
Sauls, John T
Fuhrer, Tobias
Noor, Elad
Nguyen, Jen
Fernandez, Vicente I
Buffing, Marieke F
Berney, Michael
Jun, Suckjoon
Stocker, Roman
Sauer, Uwe
author_facet Sekar, Karthik
Rusconi, Roberto
Sauls, John T
Fuhrer, Tobias
Noor, Elad
Nguyen, Jen
Fernandez, Vicente I
Buffing, Marieke F
Berney, Michael
Jun, Suckjoon
Stocker, Roman
Sauer, Uwe
author_sort Sekar, Karthik
collection PubMed
description In natural environments, microbes are typically non‐dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient‐rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real‐time metabolomics and microfluidic single‐cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non‐dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease‐dependent degradation. Lag time changed in model‐congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division.
format Online
Article
Text
id pubmed-6217170
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-62171702018-11-08 Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria Sekar, Karthik Rusconi, Roberto Sauls, John T Fuhrer, Tobias Noor, Elad Nguyen, Jen Fernandez, Vicente I Buffing, Marieke F Berney, Michael Jun, Suckjoon Stocker, Roman Sauer, Uwe Mol Syst Biol Articles In natural environments, microbes are typically non‐dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient‐rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real‐time metabolomics and microfluidic single‐cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non‐dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease‐dependent degradation. Lag time changed in model‐congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division. John Wiley and Sons Inc. 2018-11-05 /pmc/articles/PMC6217170/ /pubmed/30397005 http://dx.doi.org/10.15252/msb.20188623 Text en © 2018 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Sekar, Karthik
Rusconi, Roberto
Sauls, John T
Fuhrer, Tobias
Noor, Elad
Nguyen, Jen
Fernandez, Vicente I
Buffing, Marieke F
Berney, Michael
Jun, Suckjoon
Stocker, Roman
Sauer, Uwe
Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria
title Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria
title_full Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria
title_fullStr Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria
title_full_unstemmed Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria
title_short Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria
title_sort synthesis and degradation of ftsz quantitatively predict the first cell division in starved bacteria
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217170/
https://www.ncbi.nlm.nih.gov/pubmed/30397005
http://dx.doi.org/10.15252/msb.20188623
work_keys_str_mv AT sekarkarthik synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT rusconiroberto synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT saulsjohnt synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT fuhrertobias synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT noorelad synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT nguyenjen synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT fernandezvicentei synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT buffingmariekef synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT berneymichael synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT junsuckjoon synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT stockerroman synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria
AT saueruwe synthesisanddegradationofftszquantitativelypredictthefirstcelldivisioninstarvedbacteria