Cargando…
Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons
BACKGROUND: Cell replacement therapy has been envisioned as a promising treatment for neurodegenerative diseases. Due to the ethical concerns of ESCs-derived neural progenitor cells (NPCs) and tumorigenic potential of iPSCs, reprogramming of somatic cells directly into multipotent NPCs has emerged a...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217767/ https://www.ncbi.nlm.nih.gov/pubmed/30410751 http://dx.doi.org/10.1186/s40035-018-0132-x |
_version_ | 1783368355774726144 |
---|---|
author | Ma, Kangmu Deng, Xiaobei Xia, Xiaohuan Fan, Zhaohuan Qi, Xinrui Wang, Yongxiang Li, Yuju Ma, Yizhao Chen, Qiang Peng, Hui Ding, Jianqing Li, Chunhong Huang, Yunlong Tian, Changhai Zheng, Jialin C. |
author_facet | Ma, Kangmu Deng, Xiaobei Xia, Xiaohuan Fan, Zhaohuan Qi, Xinrui Wang, Yongxiang Li, Yuju Ma, Yizhao Chen, Qiang Peng, Hui Ding, Jianqing Li, Chunhong Huang, Yunlong Tian, Changhai Zheng, Jialin C. |
author_sort | Ma, Kangmu |
collection | PubMed |
description | BACKGROUND: Cell replacement therapy has been envisioned as a promising treatment for neurodegenerative diseases. Due to the ethical concerns of ESCs-derived neural progenitor cells (NPCs) and tumorigenic potential of iPSCs, reprogramming of somatic cells directly into multipotent NPCs has emerged as a preferred approach for cell transplantation. METHODS: Mouse astrocytes were reprogrammed into NPCs by the overexpression of transcription factors (TFs) Foxg1, Sox2, and Brn2. The generation of subtypes of neurons was directed by the force expression of cell-type specific TFs Lhx8 or Foxa2/Lmx1a. RESULTS: Astrocyte-derived induced NPCs (AiNPCs) share high similarities, including the expression of NPC-specific genes, DNA methylation patterns, the ability to proliferate and differentiate, with the wild type NPCs. The AiNPCs are committed to the forebrain identity and predominantly differentiated into glutamatergic and GABAergic neuronal subtypes. Interestingly, additional overexpression of TFs Lhx8 and Foxa2/Lmx1a in AiNPCs promoted cholinergic and dopaminergic neuronal differentiation, respectively. CONCLUSIONS: Our studies suggest that astrocytes can be converted into AiNPCs and lineage-committed AiNPCs can acquire differentiation potential of other lineages through forced expression of specific TFs. Understanding the impact of the TF sets on the reprogramming and differentiation into specific lineages of neurons will provide valuable strategies for astrocyte-based cell therapy in neurodegenerative diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40035-018-0132-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6217767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-62177672018-11-08 Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons Ma, Kangmu Deng, Xiaobei Xia, Xiaohuan Fan, Zhaohuan Qi, Xinrui Wang, Yongxiang Li, Yuju Ma, Yizhao Chen, Qiang Peng, Hui Ding, Jianqing Li, Chunhong Huang, Yunlong Tian, Changhai Zheng, Jialin C. Transl Neurodegener Research BACKGROUND: Cell replacement therapy has been envisioned as a promising treatment for neurodegenerative diseases. Due to the ethical concerns of ESCs-derived neural progenitor cells (NPCs) and tumorigenic potential of iPSCs, reprogramming of somatic cells directly into multipotent NPCs has emerged as a preferred approach for cell transplantation. METHODS: Mouse astrocytes were reprogrammed into NPCs by the overexpression of transcription factors (TFs) Foxg1, Sox2, and Brn2. The generation of subtypes of neurons was directed by the force expression of cell-type specific TFs Lhx8 or Foxa2/Lmx1a. RESULTS: Astrocyte-derived induced NPCs (AiNPCs) share high similarities, including the expression of NPC-specific genes, DNA methylation patterns, the ability to proliferate and differentiate, with the wild type NPCs. The AiNPCs are committed to the forebrain identity and predominantly differentiated into glutamatergic and GABAergic neuronal subtypes. Interestingly, additional overexpression of TFs Lhx8 and Foxa2/Lmx1a in AiNPCs promoted cholinergic and dopaminergic neuronal differentiation, respectively. CONCLUSIONS: Our studies suggest that astrocytes can be converted into AiNPCs and lineage-committed AiNPCs can acquire differentiation potential of other lineages through forced expression of specific TFs. Understanding the impact of the TF sets on the reprogramming and differentiation into specific lineages of neurons will provide valuable strategies for astrocyte-based cell therapy in neurodegenerative diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40035-018-0132-x) contains supplementary material, which is available to authorized users. BioMed Central 2018-11-05 /pmc/articles/PMC6217767/ /pubmed/30410751 http://dx.doi.org/10.1186/s40035-018-0132-x Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Ma, Kangmu Deng, Xiaobei Xia, Xiaohuan Fan, Zhaohuan Qi, Xinrui Wang, Yongxiang Li, Yuju Ma, Yizhao Chen, Qiang Peng, Hui Ding, Jianqing Li, Chunhong Huang, Yunlong Tian, Changhai Zheng, Jialin C. Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons |
title | Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons |
title_full | Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons |
title_fullStr | Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons |
title_full_unstemmed | Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons |
title_short | Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons |
title_sort | direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217767/ https://www.ncbi.nlm.nih.gov/pubmed/30410751 http://dx.doi.org/10.1186/s40035-018-0132-x |
work_keys_str_mv | AT makangmu directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT dengxiaobei directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT xiaxiaohuan directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT fanzhaohuan directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT qixinrui directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT wangyongxiang directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT liyuju directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT mayizhao directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT chenqiang directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT penghui directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT dingjianqing directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT lichunhong directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT huangyunlong directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT tianchanghai directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons AT zhengjialinc directconversionofmouseastrocytesintoneuralprogenitorcellsandspecificlineagesofneurons |