Cargando…
Probabilistic linking to enhance deterministic algorithms and reduce linkage errors in hospital administrative data
BACKGROUND: The pseudonymisation algorithm used to link together episodes of care belonging to the same patient in England [Hospital Episode Statistics ID (HESID)] has never undergone any formal evaluation to determine the extent of data linkage error. OBJECTIVE: To quantify improvements in linkage...
Autores principales: | Hagger-Johnson, Gareth, Harron, Katie, Goldstein, Harvey, Aldridge, Rob, Gilbert, Ruth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217911/ https://www.ncbi.nlm.nih.gov/pubmed/28749318 http://dx.doi.org/10.14236/jhi.v24i2.891 |
Ejemplares similares
-
Combining deterministic and probabilistic matching to reduce data linkage errors in hospital administrative data
por: Hagger-Johnson, Gareth, et al.
Publicado: (2017) -
Utilising identifier error variation in linkage of large administrative data sources
por: Harron, Katie, et al.
Publicado: (2017) -
Data linkage errors in hospital administrative data when applying a pseudonymisation algorithm to paediatric intensive care records
por: Hagger-Johnson, Gareth, et al.
Publicado: (2015) -
Evaluating bias due to data linkage error in electronic healthcare records
por: Harron, Katie, et al.
Publicado: (2014) -
GUILD: GUidance for Information about Linking Data sets†
por: Gilbert, Ruth, et al.
Publicado: (2018)