Cargando…
Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal
Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co(3)Sn(2)S(2), with a quasi-two-dimensional crystal structure consisting of stacked...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217931/ https://www.ncbi.nlm.nih.gov/pubmed/30416534 http://dx.doi.org/10.1038/s41567-018-0234-5 |
_version_ | 1783368376218812416 |
---|---|
author | Liu, Enke Sun, Yan Kumar, Nitesh Müchler, Lukas Sun, Aili Jiao, Lin Yang, Shuo-Ying Liu, Defa Liang, Aiji Xu, Qiunan Kroder, Johannes Süß, Vicky Borrmann, Horst Shekhar, Chandra Wang, Zhaosheng Xi, Chuanying Wang, Wenhong Schnelle, Walter Wirth, Steffen Chen, Yulin Goennenwein, Sebastian T. B. Felser, Claudia |
author_facet | Liu, Enke Sun, Yan Kumar, Nitesh Müchler, Lukas Sun, Aili Jiao, Lin Yang, Shuo-Ying Liu, Defa Liang, Aiji Xu, Qiunan Kroder, Johannes Süß, Vicky Borrmann, Horst Shekhar, Chandra Wang, Zhaosheng Xi, Chuanying Wang, Wenhong Schnelle, Walter Wirth, Steffen Chen, Yulin Goennenwein, Sebastian T. B. Felser, Claudia |
author_sort | Liu, Enke |
collection | PubMed |
description | Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co(3)Sn(2)S(2), with a quasi-two-dimensional crystal structure consisting of stacked Kagomé lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl nodes close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the significantly enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1130 Ω(−1) cm(−1) and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the Kagomé-lattice structure and the out-of-plane ferromagnetic order of Co(3)Sn(2)S(2), we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit. |
format | Online Article Text |
id | pubmed-6217931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-62179312019-01-30 Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal Liu, Enke Sun, Yan Kumar, Nitesh Müchler, Lukas Sun, Aili Jiao, Lin Yang, Shuo-Ying Liu, Defa Liang, Aiji Xu, Qiunan Kroder, Johannes Süß, Vicky Borrmann, Horst Shekhar, Chandra Wang, Zhaosheng Xi, Chuanying Wang, Wenhong Schnelle, Walter Wirth, Steffen Chen, Yulin Goennenwein, Sebastian T. B. Felser, Claudia Nat Phys Article Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co(3)Sn(2)S(2), with a quasi-two-dimensional crystal structure consisting of stacked Kagomé lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl nodes close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the significantly enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1130 Ω(−1) cm(−1) and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the Kagomé-lattice structure and the out-of-plane ferromagnetic order of Co(3)Sn(2)S(2), we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit. 2018-07-30 2018-11 /pmc/articles/PMC6217931/ /pubmed/30416534 http://dx.doi.org/10.1038/s41567-018-0234-5 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Liu, Enke Sun, Yan Kumar, Nitesh Müchler, Lukas Sun, Aili Jiao, Lin Yang, Shuo-Ying Liu, Defa Liang, Aiji Xu, Qiunan Kroder, Johannes Süß, Vicky Borrmann, Horst Shekhar, Chandra Wang, Zhaosheng Xi, Chuanying Wang, Wenhong Schnelle, Walter Wirth, Steffen Chen, Yulin Goennenwein, Sebastian T. B. Felser, Claudia Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal |
title | Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal |
title_full | Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal |
title_fullStr | Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal |
title_full_unstemmed | Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal |
title_short | Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal |
title_sort | giant anomalous hall effect in a ferromagnetic kagomé-lattice semimetal |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217931/ https://www.ncbi.nlm.nih.gov/pubmed/30416534 http://dx.doi.org/10.1038/s41567-018-0234-5 |
work_keys_str_mv | AT liuenke giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT sunyan giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT kumarnitesh giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT muchlerlukas giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT sunaili giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT jiaolin giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT yangshuoying giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT liudefa giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT liangaiji giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT xuqiunan giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT kroderjohannes giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT sußvicky giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT borrmannhorst giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT shekharchandra giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT wangzhaosheng giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT xichuanying giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT wangwenhong giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT schnellewalter giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT wirthsteffen giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT chenyulin giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT goennenweinsebastiantb giantanomaloushalleffectinaferromagnetickagomelatticesemimetal AT felserclaudia giantanomaloushalleffectinaferromagnetickagomelatticesemimetal |