Cargando…
Semi-supervised machine learning approaches for predicting the chronology of archaeological sites: A case study of temples from medieval Angkor, Cambodia
Archaeologists often need to date and group artifact types to discern typologies, chronologies, and classifications. For over a century, statisticians have been using classification and clustering techniques to infer patterns in data that can be defined by algorithms. In the case of archaeology, lin...
Autores principales: | Klassen, Sarah, Weed, Jonathan, Evans, Damian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218026/ https://www.ncbi.nlm.nih.gov/pubmed/30395642 http://dx.doi.org/10.1371/journal.pone.0205649 |
Ejemplares similares
-
Temple occupation and the tempo of collapse at Angkor Wat, Cambodia
por: Carter, Alison K., et al.
Publicado: (2019) -
Bayesian regression versus machine learning for rapid age estimation of archaeological features identified with lidar at Angkor
por: Carleton, W. Christopher, et al.
Publicado: (2023) -
First Direct Dating for the Construction and Modification of the Baphuon Temple Mountain in Angkor, Cambodia
por: Leroy, Stéphanie, et al.
Publicado: (2015) -
Diachronic modeling of the population within the medieval Greater Angkor Region settlement complex
por: Klassen, Sarah, et al.
Publicado: (2021) -
Provisioning an Early City: Spatial Equilibrium in the Agricultural Economy at Angkor, Cambodia
por: Klassen, Sarah, et al.
Publicado: (2021)