Cargando…

Causes of post-installation penetration of jack-up spudcan foundations in clays

This paper examines possible causes of additional spudcan settlement after preloading using both centrifuge model tests and small strain finite element analysis, in which spudcan settlement due to cavity collapse, consolidation settlement and settlement due to cyclic loading are incorporated. Back-a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yu Ping, Yang, Yu, Yi, Jiang Tao, Ho, Jia Hui, Shi, Jian Yong, Goh, Siang Huat, Lee, Fook Hou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218051/
https://www.ncbi.nlm.nih.gov/pubmed/30395581
http://dx.doi.org/10.1371/journal.pone.0206626
Descripción
Sumario:This paper examines possible causes of additional spudcan settlement after preloading using both centrifuge model tests and small strain finite element analysis, in which spudcan settlement due to cavity collapse, consolidation settlement and settlement due to cyclic loading are incorporated. Back-analyses of seven jack-up rigs in the Gulf of Mexico show that even complete cavity collapse could only explain part of the measured additional settlements in the majority of the cases. Small strain finite element analyses also show that spudcan consolidation settlement is likely to account for even less of the additional settlement than cavity collapse in the sites considered. On the other hand, centrifuge model tests show that large amplitude cyclic rocking has a very significant effect on spudcan settlement, even if half of the preload has been removed. However, this effect cannot be explained by the exceedance of the yield envelope since the loading combination had not exceeded the yield envelope. One possible explanation is the stiffness and strength degradation of the soil under cyclic loading. In view of this, a conservative approach is recommended in instances where large amplitude cyclic rocking, such as that arising from storm loading, is expected shortly after preloading. The presence of lattice legs is found to reduce the spudcan settlement during large amplitude cyclic rocking.