Cargando…

Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load

Musculoskeletal injuries (MSI) in the military reduce soldier capability and impose substantial costs. Characterizing biomechanical surrogates of MSI during commonly performed military tasks (e.g., load carriage) is necessary for evaluating the effectiveness of possible interventions to reduce MSI r...

Descripción completa

Detalles Bibliográficos
Autores principales: Lenton, Gavin K., Bishop, Peter J., Saxby, David J., Doyle, Tim L. A., Pizzolato, Claudio, Billing, Daniel, Lloyd, David G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218072/
https://www.ncbi.nlm.nih.gov/pubmed/30395591
http://dx.doi.org/10.1371/journal.pone.0206859
_version_ 1783368394849910784
author Lenton, Gavin K.
Bishop, Peter J.
Saxby, David J.
Doyle, Tim L. A.
Pizzolato, Claudio
Billing, Daniel
Lloyd, David G.
author_facet Lenton, Gavin K.
Bishop, Peter J.
Saxby, David J.
Doyle, Tim L. A.
Pizzolato, Claudio
Billing, Daniel
Lloyd, David G.
author_sort Lenton, Gavin K.
collection PubMed
description Musculoskeletal injuries (MSI) in the military reduce soldier capability and impose substantial costs. Characterizing biomechanical surrogates of MSI during commonly performed military tasks (e.g., load carriage) is necessary for evaluating the effectiveness of possible interventions to reduce MSI risk. This study determined the effects of body-borne load distribution, load magnitude, and walking speed on tibiofemoral contact forces. Twenty-one Australian Army Reserve soldiers completed a treadmill walking protocol in an unloaded condition and wearing four armor types (standard-issue and three prototypes) with two load configurations (15 and 30 kg) for a total of 8 armor x load ensembles. In each ensemble, participants completed a 5-minute warm-up, and then walked for 10 minutes at both moderate (1.53 m⋅s(-1)) and fast (1.81 m⋅s(-1)) speeds. During treadmill walking, three-dimensional kinematics, ground reaction forces, and muscle activity from nine lower-limb muscles were collected in the final minute of each speed. These data were used as inputs into a neuromusculoskeletal model, which estimated medial, lateral and total tibiofemoral contact forces. Repeated measures analyses of variance revealed no differences for any variables between armor types, but peak medial compartment contact forces increased when progressing from moderate to fast walking and with increased load (p<0.001). Acute exposure to load carriage increased estimated tibiofemoral contact forces 10.1 and 19.9% with 15 and 30kg of carried load, respectively, compared to unloaded walking. These results suggest that soldiers carrying loads in excess of 15 kg for prolonged periods could be at greater risk of knee MSI than those with less exposure.
format Online
Article
Text
id pubmed-6218072
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-62180722018-11-19 Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load Lenton, Gavin K. Bishop, Peter J. Saxby, David J. Doyle, Tim L. A. Pizzolato, Claudio Billing, Daniel Lloyd, David G. PLoS One Research Article Musculoskeletal injuries (MSI) in the military reduce soldier capability and impose substantial costs. Characterizing biomechanical surrogates of MSI during commonly performed military tasks (e.g., load carriage) is necessary for evaluating the effectiveness of possible interventions to reduce MSI risk. This study determined the effects of body-borne load distribution, load magnitude, and walking speed on tibiofemoral contact forces. Twenty-one Australian Army Reserve soldiers completed a treadmill walking protocol in an unloaded condition and wearing four armor types (standard-issue and three prototypes) with two load configurations (15 and 30 kg) for a total of 8 armor x load ensembles. In each ensemble, participants completed a 5-minute warm-up, and then walked for 10 minutes at both moderate (1.53 m⋅s(-1)) and fast (1.81 m⋅s(-1)) speeds. During treadmill walking, three-dimensional kinematics, ground reaction forces, and muscle activity from nine lower-limb muscles were collected in the final minute of each speed. These data were used as inputs into a neuromusculoskeletal model, which estimated medial, lateral and total tibiofemoral contact forces. Repeated measures analyses of variance revealed no differences for any variables between armor types, but peak medial compartment contact forces increased when progressing from moderate to fast walking and with increased load (p<0.001). Acute exposure to load carriage increased estimated tibiofemoral contact forces 10.1 and 19.9% with 15 and 30kg of carried load, respectively, compared to unloaded walking. These results suggest that soldiers carrying loads in excess of 15 kg for prolonged periods could be at greater risk of knee MSI than those with less exposure. Public Library of Science 2018-11-05 /pmc/articles/PMC6218072/ /pubmed/30395591 http://dx.doi.org/10.1371/journal.pone.0206859 Text en © 2018 Lenton et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lenton, Gavin K.
Bishop, Peter J.
Saxby, David J.
Doyle, Tim L. A.
Pizzolato, Claudio
Billing, Daniel
Lloyd, David G.
Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load
title Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load
title_full Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load
title_fullStr Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load
title_full_unstemmed Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load
title_short Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load
title_sort tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218072/
https://www.ncbi.nlm.nih.gov/pubmed/30395591
http://dx.doi.org/10.1371/journal.pone.0206859
work_keys_str_mv AT lentongavink tibiofemoraljointcontactforcesincreasewithloadmagnitudeandwalkingspeedbutremainalmostunchangedwithdifferenttypesofcarriedload
AT bishoppeterj tibiofemoraljointcontactforcesincreasewithloadmagnitudeandwalkingspeedbutremainalmostunchangedwithdifferenttypesofcarriedload
AT saxbydavidj tibiofemoraljointcontactforcesincreasewithloadmagnitudeandwalkingspeedbutremainalmostunchangedwithdifferenttypesofcarriedload
AT doyletimla tibiofemoraljointcontactforcesincreasewithloadmagnitudeandwalkingspeedbutremainalmostunchangedwithdifferenttypesofcarriedload
AT pizzolatoclaudio tibiofemoraljointcontactforcesincreasewithloadmagnitudeandwalkingspeedbutremainalmostunchangedwithdifferenttypesofcarriedload
AT billingdaniel tibiofemoraljointcontactforcesincreasewithloadmagnitudeandwalkingspeedbutremainalmostunchangedwithdifferenttypesofcarriedload
AT lloyddavidg tibiofemoraljointcontactforcesincreasewithloadmagnitudeandwalkingspeedbutremainalmostunchangedwithdifferenttypesofcarriedload