Cargando…
Application of Weighted Gene Co-Expression Network Analysis to Explore the Key Genes in Alzheimer’s Disease
BACKGROUND: Weighted co-expression network analysis (WGCNA) is a powerful systems biology method to describe the correlation of gene expression based on the microarray database, which can be used to facilitate the discovery of therapeutic targets or candidate biomarkers in diseases. OBJECTIVE: To ex...
Autores principales: | Liang, Jia-Wei, Fang, Zheng-Yu, Huang, Yong, Liuyang, Zhen-yu, Zhang, Xiao-Lin, Wang, Jing-Lin, Wei, Hui, Wang, Jian-Zhi, Wang, Xiao-Chuan, Zeng, Ji, Liu, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218130/ https://www.ncbi.nlm.nih.gov/pubmed/30124448 http://dx.doi.org/10.3233/JAD-180400 |
Ejemplares similares
-
Identification of key genes involved in the recurrence of glioblastoma multiforme using weighted gene co-expression network analysis and differential expression analysis
por: Ren, Peng, et al.
Publicado: (2021) -
Identification of hub genes and key signaling pathways by weighted gene co-expression network analysis for human aortic stenosis and insufficiency
por: Yang, Yang, et al.
Publicado: (2023) -
Identification of Key Genes in Severe Burns by Using Weighted Gene Coexpression Network Analysis
por: Guo, ZhiHui, et al.
Publicado: (2022) -
Weighted gene coexpression network analysis identifies the key role associated with acute coronary syndrome
por: Wang, Yong, et al.
Publicado: (2020) -
Identifying and validating key genes mediating intracranial aneurysm rupture using weighted correlation network analysis and exploration of personalized treatment
por: Wu, Ji, et al.
Publicado: (2022)