Cargando…

Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery

PURPOSE: We develop and assess the impact of depth-based, motion-stabilized colorization (color) of microscope-integrated optical coherence tomography (MIOCT) volumes on microsurgical performance and ability to interpret surgical volumes. METHODS: Color was applied in real-time as gradients indicati...

Descripción completa

Detalles Bibliográficos
Autores principales: Bleicher, Isaac D., Jackson-Atogi, Moseph, Viehland, Christian, Gabr, Hesham, Izatt, Joseph A., Toth, Cynthia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218157/
https://www.ncbi.nlm.nih.gov/pubmed/30405965
http://dx.doi.org/10.1167/tvst.7.6.1
Descripción
Sumario:PURPOSE: We develop and assess the impact of depth-based, motion-stabilized colorization (color) of microscope-integrated optical coherence tomography (MIOCT) volumes on microsurgical performance and ability to interpret surgical volumes. METHODS: Color was applied in real-time as gradients indicating axial position and stabilized based on calculated center of mass. In a test comparing colorization versus grayscale visualizations of prerecorded intraoperative volumes from human surgery, ophthalmologists (N = 7) were asked to identify retinal membranes, the presence of an instrument, its contact with tissue, and associated deformation of the retina. In a separate controlled trial, trainees (N = 15) performed microsurgical skills without conventional optical visualization and compared colorized versus grayscale MIOCT visualization on a stereoptic screen. Skills included thickness identification, instrument placement, and object manipulation, and were assessed based on time, performance metrics, and confidence. RESULTS: In intraoperative volume testing, colorization improved ability to differentiate membrane from retina (P < 0.01), correctly identify instrument contact with membrane (P = 0.03), and retinal deformation (P = 0.01). In model microsurgical skills testing, trainees working with colorized volumes were faster (P < 0.01) and more correct (P < 0.01) in assessments of thickness for recessed and elevated objects, were less likely to inadvertently contact a surface when approaching with an instrument (P < 0.01), and uniformly more confident (P < 0.01 for each) in conducting each skill. CONCLUSIONS: Depth-based colorization enables effective identification of retinal membranes and tissue deformation. In microsurgical skill testing, it improves user efficiency, and confidence in microscope-independent, OCT-guided model surgical maneuvers. TRANSLATIONAL RELEVANCE: Novel depth-based colorization and stabilization technology improves the use of intraoperative MIOCT.