Cargando…
Generation of Bose-Einstein Condensates’ Ground State Through Machine Learning
We show that both single-component and two-component Bose-Einstein condensates’ (BECs) ground states can be simulated by a deep convolutional neural network. We trained the neural network via inputting the parameters in the dimensionless Gross-Pitaevskii equation (GPE) and outputting the ground-stat...
Autores principales: | Liang, Xiao, Zhang, Huan, Liu, Sheng, Li, Yan, Zhang, Yong-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218512/ https://www.ncbi.nlm.nih.gov/pubmed/30397223 http://dx.doi.org/10.1038/s41598-018-34725-9 |
Ejemplares similares
-
Quantum corrections to the ground state of a trapped Bose-Einstein condensate
por: Braaten, E, et al.
Publicado: (1997) -
Bose-Einstein condensation
por: Pitaevskii, Lev Petrovich, et al.
Publicado: (2003) -
Bose-Einstein condensation
por: Snoke, David W, et al.
Publicado: (1995) -
On Bose-Einstein condensation
por: Wu Tai Tsun
Publicado: (1997) -
New state of matter: Bose-Einstein condensation
Publicado: (1995)