Cargando…
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
The emergence of single-cell RNA sequencing (scRNA-seq) technologies has enabled us to measure the expression levels of thousands of genes at single-cell resolution. However, insufficient quantities of starting RNA in the individual cells cause significant dropout events, introducing a large number...
Autores principales: | Talwar, Divyanshu, Mongia, Aanchal, Sengupta, Debarka, Majumdar, Angshul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218547/ https://www.ncbi.nlm.nih.gov/pubmed/30397240 http://dx.doi.org/10.1038/s41598-018-34688-x |
Ejemplares similares
-
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
por: Mongia, Aanchal, et al.
Publicado: (2019) -
FITs: forest of imputation trees for recovering true signals in single-cell open chromatin profiles
por: Sharma, Rachesh, et al.
Publicado: (2020) -
AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders
por: Xu, Li, et al.
Publicado: (2021) -
Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-seq Data
por: Chi, Weilai, et al.
Publicado: (2020) -
Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks
por: Rao, Jiahua, et al.
Publicado: (2021)