Cargando…

GDF15 Regulates Malat-1 Circular RNA and Inactivates NFκB Signaling Leading to Immune Tolerogenic DCs for Preventing Alloimmune Rejection in Heart Transplantation

Recombinant human growth differentiation factor 15 (rhGDF15) affects dendritic cell (DC) maturation. However, whether GDF15 is expressed in DCs and its roles and signaling in DCs remain largely unknown. It is unclear whether GDF15-DCs can induce immune tolerance in heart transplantation (HT). This s...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yixin, Zhang, Guangfeng, Liu, Yanling, Chen, Renqi, Zhao, Duo, McAlister, Vivian, Mele, Tina, Liu, Kexiang, Zheng, Xiufen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218625/
https://www.ncbi.nlm.nih.gov/pubmed/30425709
http://dx.doi.org/10.3389/fimmu.2018.02407
Descripción
Sumario:Recombinant human growth differentiation factor 15 (rhGDF15) affects dendritic cell (DC) maturation. However, whether GDF15 is expressed in DCs and its roles and signaling in DCs remain largely unknown. It is unclear whether GDF15-DCs can induce immune tolerance in heart transplantation (HT). This study aims to understand the impact of endogenous GDF15 on DC's development, function, underlying molecular mechanism including circular RNA (circRNA). This study will also explore GDF15-DC-mediated immune modulation in HT. Bone marrow (BM) derived DCs were cultured and treated to up- or down regulate GDF15 expression. Phenotype and function of DCs were detected. Expression of genes and circRNAs was determined by qRT-PCR. The signaling pathways activated by GDF15 were examined. The impact of GDF15 treated DCs on preventing allograft immune rejection was assessed in a MHC full mismatch mouse HT model. Our results showed that GDF15 was expressed in DCs. Knockout of GDF15 promoted DC maturation, enhanced immune responsive functions, up-regulated malat-1 circular RNA (circ_Malat 1), and activated the nuclear factor kappa B (NFκB) pathway. Overexpression of GDF15 in DCs increased immunosuppressive/inhibitory molecules, enhanced DCs to induce T cell exhaustion, and promoted Treg generation through IDO signaling. GDF15 utilized transforming growth factor (TGF) β receptors I and II, not GFAL. Administration of GDF15 treated DCs prevented allograft rejection and induced immune tolerance in transplantation. In conclusion, GDF15 induces tolerogenic DCs (Tol-DCs) through inhibition of circ_Malat-1 and the NFκB signaling pathway and up-regulation of IDO. GDF15-DCs can prevent alloimmune rejection in HT.