Cargando…

A Prognostic Nomogram for Cervical Cancer after Surgery from SEER Database

Background: To develop and validate a nomogram based on the conventional measurements and log of odds between the number of positive lymph node and the number of negative lymph node (LODDS) in predicting prognosis for cervical cancer patients after surgery. Methods: A total of 8202 cervical cancer p...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ce, Yang, Chunyan, Wang, Wenjie, Xia, Bairong, Li, Kang, Sun, Fengyu, Hou, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218784/
https://www.ncbi.nlm.nih.gov/pubmed/30410596
http://dx.doi.org/10.7150/jca.26220
Descripción
Sumario:Background: To develop and validate a nomogram based on the conventional measurements and log of odds between the number of positive lymph node and the number of negative lymph node (LODDS) in predicting prognosis for cervical cancer patients after surgery. Methods: A total of 8202 cervical cancer patients with pathologically confirmed between 2004 and 2014 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. All the patients were divided into training (n=3603) and validation (n=4599) cohorts based on consecutive age of diagnosis. Demographic and clinical pathological factors were evaluated the association with overall survival (OS). Parameters significantly correlating with OS were used to create a nomogram. An independent external validation cohort was subsequently used to assess the predictive performance of the model. Results: In the training set, age at diagnosis, race, marital status, tumor grade, FIGO stage, histology, size and LODDS were correlated significantly with outcome and used to develop a nomogram. The calibration curve for probability of survival showed excellent agreement between prediction by nomogram and actual observation in the training cohort, with a bootstrap-corrected concordance index of 0.749(95% CI, 0.731-0.767). Importantly, our nomogram performed favorably compared to the currently utilized FIGO model, with concordance indices of 0.786 (95% CI, 0.764 to 0.808) vs 0.685 (95%CI, 0.660 to 0.710) for OS in the validation cohort, respectively. Conclusions: By incorporating LODDS, our nomogram may be superior to the currently utilized FIGO staging system in predicting OS in cervical cancer patients after surgery.