Cargando…
Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms
BACKGROUND: Convolution neural networks have been considered for automatic analysis of fundus images to detect signs of diabetic retinopathy but suffer from low sensitivity. METHODS: This study has proposed an alternate method using probabilistic output from Convolution neural network to automatical...
Autores principales: | Khojasteh, Parham, Aliahmad, Behzad, Kumar, Dinesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219077/ https://www.ncbi.nlm.nih.gov/pubmed/30400869 http://dx.doi.org/10.1186/s12886-018-0954-4 |
Ejemplares similares
-
Detection of Microaneurysms in Fundus Images Based on an Attention Mechanism
por: Zhang, Lizong, et al.
Publicado: (2019) -
Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
por: Raudonis, Vidas, et al.
Publicado: (2023) -
Microaneurysm detection in fundus images using a two-step convolutional neural network
por: Eftekhari, Noushin, et al.
Publicado: (2019) -
Microaneurysms detection in color fundus images using machine learning based on directional local contrast
por: Long, Shengchun, et al.
Publicado: (2020) -
Deep Learning Approach for Automatic Microaneurysms Detection
por: Mateen, Muhammad, et al.
Publicado: (2022)