Cargando…

First report of natural Wolbachia infection in wild Anopheles funestus population in Senegal

BACKGROUND: Until very recently, Anopheles were considered naturally unable to host Wolbachia, an intracellular bacterium regarded as a potential biological control tool. Their detection in field populations of Anopheles gambiae sensu lato, suggests that they may also be present in many more anophel...

Descripción completa

Detalles Bibliográficos
Autores principales: Niang, El Hadji Amadou, Bassene, Hubert, Makoundou, Patrick, Fenollar, Florence, Weill, Mylène, Mediannikov, Oleg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219158/
https://www.ncbi.nlm.nih.gov/pubmed/30400987
http://dx.doi.org/10.1186/s12936-018-2559-z
Descripción
Sumario:BACKGROUND: Until very recently, Anopheles were considered naturally unable to host Wolbachia, an intracellular bacterium regarded as a potential biological control tool. Their detection in field populations of Anopheles gambiae sensu lato, suggests that they may also be present in many more anopheline species than previously thought. RESULTS: Here, is reported the first discovery of natural Wolbachia infections in Anopheles funestus populations from Senegal, the second main malaria vector in Africa. Molecular phylogeny analysis based on the 16S rRNA gene revealed at least two Wolbachia genotypes which were named wAnfu-A and wAnfu-B, according to their close relatedness to the A and B supergroups. Furthermore, both wAnfu genotypes displayed high proximity with wAnga sequences previously described from the An. gambiae complex, with only few nucleotide differences. However, the low prevalence of infection, together with the difficulties encountered for detection, whatever method used, highlights the need to develop an effective and sensitive Wolbachia screening method dedicated to anopheline. CONCLUSIONS: The discovery of natural Wolbachia infection in An. funestus, another major malaria vector, may overcome the main limitation of using a Wolbachia-based approach to control malaria through population suppression and/or replacement.