Cargando…

GPNMB methylation: a new marker of potentially carcinogenic colon lesions

BACKGROUND: Epigenetic plays an important role in colorectal neoplasia process. There is a need to determine sound biomarkers of colorectal cancer (CRC) progression with clinical and therapeutic implications. Therefore, we aimed to examine the role and methylation status of Glyco Protein Non-Metasta...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashktorab, Hassan, Rahi, Hamed, Nouraie, Mehdi, Shokrani, Babak, Lee, Edward, Haydari, Tahmineh, Laiyemo, Adeyinka O., Siegel, Peter, Brim, Hassan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219212/
https://www.ncbi.nlm.nih.gov/pubmed/30400781
http://dx.doi.org/10.1186/s12885-018-4903-7
Descripción
Sumario:BACKGROUND: Epigenetic plays an important role in colorectal neoplasia process. There is a need to determine sound biomarkers of colorectal cancer (CRC) progression with clinical and therapeutic implications. Therefore, we aimed to examine the role and methylation status of Glyco Protein Non-Metastatic GPNM B (GPNMB) gene in normal, adenoma and CRC in African American (AA) patients. METHODS: The methylation status of 13 CpG sites (chr7: 23287345–23,287,426) in GPNMB gene’s promoter, was analyzed by pyrosequencing in human CRC cell lines (HCT116, SW480, and HT29) and microdissected African American paraffin embedded samples (20 normal, 21 non-advanced adenoma (NA), 48 advanced adenoma (AD), and 20 cancer tissues. GPNMB expression was analyzed by immunohistochemistry (IHC) on tissue microarrays (TMA). Correlations between GPNMB methylation and expression with clinicopathological features were analyzed. GPNMB functional analysis was performed in triplicates using cell proliferation, migration and invasion assays in HCT116 colon cell line after stable transfection with a GPNMB-cDNA expression vector. RESULTS: GPNMB methylation was lower in normal mucosa compared to CRC samples (1/20 [5%] vs. 18/20 [90%]; P < 0.001). AD also had a significantly higher GPNMB methylation frequency than normal colon samples (42/48 [88%] vs 1/20 [5%]; P < 0.001). GPNMB was more frequently methylated in AD than in matched normal mucosa from three patients (3/3 [100%] vs 1/3 [33.3%]; P < 0.001). The frequency of GPNMB methylation in NA differed significantly from that in the normal mucosa (16/21 [76%] vs 1/20 [5%]; P = 0.008). There was statistically significant correlation of higher methylation at advanced stages and lower methylation at stage 1 CRCs (P < 0.05). In agreement with these findings, GPNMB protein expression decreased in CRC tissues compared with AD and NA colon mucosa (p < 0.05). GPNMB overexpression in HCT116 colon cancer cell line decreased cell proliferation [(24 h, P = 0.02), (48 h, P < 0.001, 72 h, P = 0.007)], invasion (p < 0.05) and migration (p > 0.05) compared to the mock-transfected cells. CONCLUSION: Our data indicate a high methylation profile leading to a lower GPNMB expression in adenoma and CRC samples. The functional analysis established GPNMB as a potential tumor suppressor gene. As such, GPNMB might be useful as a biomarker of adenomas with high carcinogenic potential.