Cargando…

High volume fly ash mortar containing nano-calcium carbonate as a sustainable cementitious material: microstructure and strength development

The mechanisms underlying the effects of nano-calcium carbonate (NC) on the strength of high volume fly ash (FA) mortar are discussed. Two NCs are used as 2%, 4%, 6%, and 8% by weight of cementitious materials. Hydrated products of fly ash mortar containing NC was investigated using X-ray diffractio...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Huashan, Che, Yujun, Leng, Faguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219606/
https://www.ncbi.nlm.nih.gov/pubmed/30401939
http://dx.doi.org/10.1038/s41598-018-34851-4
Descripción
Sumario:The mechanisms underlying the effects of nano-calcium carbonate (NC) on the strength of high volume fly ash (FA) mortar are discussed. Two NCs are used as 2%, 4%, 6%, and 8% by weight of cementitious materials. Hydrated products of fly ash mortar containing NC was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG) and differential thermal gravity (DTG) analysis. Results indicate that NC could improve strength of FA mortar due to the more rapid growth of hydrated products induced by NC through additional nucleation sites. Corresponding to the highest measured strength of FA mortar, the optimal contents of NC are around 2%. In addition, the presence of 2% NC improved the microstructure of FA mortar after 180 days due to the formation of calcium carbonaluminate hydrate.