Cargando…

Kinetic properties of persistent Na(+) current orchestrate oscillatory bursting in respiratory neurons

The rhythmic pattern of breathing depends on the pre-Bötzinger complex (preBötC) in the brainstem, a vital circuit that contains a population of neurons with intrinsic oscillatory bursting behavior. Here, we investigate the specific kinetic properties that enable voltage-gated sodium channels to est...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamanishi, Tadashi, Koizumi, Hidehiko, Navarro, Marco A., Milescu, Lorin S., Smith, Jeffrey C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219691/
https://www.ncbi.nlm.nih.gov/pubmed/30301870
http://dx.doi.org/10.1085/jgp.201812100
_version_ 1783368700334702592
author Yamanishi, Tadashi
Koizumi, Hidehiko
Navarro, Marco A.
Milescu, Lorin S.
Smith, Jeffrey C.
author_facet Yamanishi, Tadashi
Koizumi, Hidehiko
Navarro, Marco A.
Milescu, Lorin S.
Smith, Jeffrey C.
author_sort Yamanishi, Tadashi
collection PubMed
description The rhythmic pattern of breathing depends on the pre-Bötzinger complex (preBötC) in the brainstem, a vital circuit that contains a population of neurons with intrinsic oscillatory bursting behavior. Here, we investigate the specific kinetic properties that enable voltage-gated sodium channels to establish oscillatory bursting in preBötC inspiratory neurons, which exhibit an unusually large persistent Na(+) current (I(NaP)). We first characterize the kinetics of I(NaP) in neonatal rat brainstem slices in vitro, using whole-cell patch-clamp and computational modeling, and then test the contribution of I(NaP) to rhythmic bursting in live neurons, using the dynamic clamp technique. We provide evidence that subthreshold activation, persistence at suprathreshold potentials, slow inactivation, and slow recovery from inactivation are kinetic features of I(NaP) that regulate all aspects of intrinsic rhythmic bursting in preBötC neurons. The slow and cumulative inactivation of I(NaP) during the burst active phase controls burst duration and termination, while the slow recovery from inactivation controls the duration of the interburst interval. To demonstrate this mechanism, we develop a Markov state model of I(NaP) that explains a comprehensive set of voltage clamp data. By adding or subtracting a computer-generated I(NaP) from a live neuron via dynamic clamp, we are able to convert nonbursters into intrinsic bursters, and vice versa. As a control, we test a model with inactivation features removed. Adding noninactivating I(NaP) into nonbursters results in a pattern of random transitions between sustained firing and quiescence. The relative amplitude of I(NaP) is the key factor that separates intrinsic bursters from nonbursters and can change the fraction of intrinsic bursters in the preBötC. I(NaP) could thus be an important target for regulating network rhythmogenic properties.
format Online
Article
Text
id pubmed-6219691
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-62196912019-05-05 Kinetic properties of persistent Na(+) current orchestrate oscillatory bursting in respiratory neurons Yamanishi, Tadashi Koizumi, Hidehiko Navarro, Marco A. Milescu, Lorin S. Smith, Jeffrey C. J Gen Physiol Research Articles The rhythmic pattern of breathing depends on the pre-Bötzinger complex (preBötC) in the brainstem, a vital circuit that contains a population of neurons with intrinsic oscillatory bursting behavior. Here, we investigate the specific kinetic properties that enable voltage-gated sodium channels to establish oscillatory bursting in preBötC inspiratory neurons, which exhibit an unusually large persistent Na(+) current (I(NaP)). We first characterize the kinetics of I(NaP) in neonatal rat brainstem slices in vitro, using whole-cell patch-clamp and computational modeling, and then test the contribution of I(NaP) to rhythmic bursting in live neurons, using the dynamic clamp technique. We provide evidence that subthreshold activation, persistence at suprathreshold potentials, slow inactivation, and slow recovery from inactivation are kinetic features of I(NaP) that regulate all aspects of intrinsic rhythmic bursting in preBötC neurons. The slow and cumulative inactivation of I(NaP) during the burst active phase controls burst duration and termination, while the slow recovery from inactivation controls the duration of the interburst interval. To demonstrate this mechanism, we develop a Markov state model of I(NaP) that explains a comprehensive set of voltage clamp data. By adding or subtracting a computer-generated I(NaP) from a live neuron via dynamic clamp, we are able to convert nonbursters into intrinsic bursters, and vice versa. As a control, we test a model with inactivation features removed. Adding noninactivating I(NaP) into nonbursters results in a pattern of random transitions between sustained firing and quiescence. The relative amplitude of I(NaP) is the key factor that separates intrinsic bursters from nonbursters and can change the fraction of intrinsic bursters in the preBötC. I(NaP) could thus be an important target for regulating network rhythmogenic properties. Rockefeller University Press 2018-11-05 /pmc/articles/PMC6219691/ /pubmed/30301870 http://dx.doi.org/10.1085/jgp.201812100 Text en © 2018 Yamanishi et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Research Articles
Yamanishi, Tadashi
Koizumi, Hidehiko
Navarro, Marco A.
Milescu, Lorin S.
Smith, Jeffrey C.
Kinetic properties of persistent Na(+) current orchestrate oscillatory bursting in respiratory neurons
title Kinetic properties of persistent Na(+) current orchestrate oscillatory bursting in respiratory neurons
title_full Kinetic properties of persistent Na(+) current orchestrate oscillatory bursting in respiratory neurons
title_fullStr Kinetic properties of persistent Na(+) current orchestrate oscillatory bursting in respiratory neurons
title_full_unstemmed Kinetic properties of persistent Na(+) current orchestrate oscillatory bursting in respiratory neurons
title_short Kinetic properties of persistent Na(+) current orchestrate oscillatory bursting in respiratory neurons
title_sort kinetic properties of persistent na(+) current orchestrate oscillatory bursting in respiratory neurons
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219691/
https://www.ncbi.nlm.nih.gov/pubmed/30301870
http://dx.doi.org/10.1085/jgp.201812100
work_keys_str_mv AT yamanishitadashi kineticpropertiesofpersistentnacurrentorchestrateoscillatoryburstinginrespiratoryneurons
AT koizumihidehiko kineticpropertiesofpersistentnacurrentorchestrateoscillatoryburstinginrespiratoryneurons
AT navarromarcoa kineticpropertiesofpersistentnacurrentorchestrateoscillatoryburstinginrespiratoryneurons
AT milesculorins kineticpropertiesofpersistentnacurrentorchestrateoscillatoryburstinginrespiratoryneurons
AT smithjeffreyc kineticpropertiesofpersistentnacurrentorchestrateoscillatoryburstinginrespiratoryneurons