Cargando…
Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study
BACKGROUND: There is interest in using convolutional neural networks (CNNs) to analyze medical imaging to provide computer-aided diagnosis (CAD). Recent work has suggested that image classification CNNs may not generalize to new data as well as previously believed. We assessed how well CNNs generali...
Autores principales: | Zech, John R., Badgeley, Marcus A., Liu, Manway, Costa, Anthony B., Titano, Joseph J., Oermann, Eric Karl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219764/ https://www.ncbi.nlm.nih.gov/pubmed/30399157 http://dx.doi.org/10.1371/journal.pmed.1002683 |
Ejemplares similares
-
CANDI: an R package and Shiny app for annotating radiographs and evaluating computer-aided diagnosis
por: Badgeley, Marcus A, et al.
Publicado: (2019) -
Deep learning predicts hip fracture using confounding patient and healthcare variables
por: Badgeley, Marcus A., et al.
Publicado: (2019) -
Deep Neural Network Augments Performance of Junior Residents in Diagnosing COVID-19 Pneumonia on Chest Radiographs
por: Feng, Yangqin, et al.
Publicado: (2023) -
Combining Initial Radiographs and Clinical Variables Improves Deep Learning Prognostication in Patients with COVID-19 from the Emergency Department
por: Kwon, Young Joon (Fred), et al.
Publicado: (2020) -
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021)