Cargando…
Keratoconus severity identification using unsupervised machine learning
We developed an unsupervised machine learning algorithm and applied it to big corneal parameters to identify and monitor keratoconus stages. A big dataset of corneal swept source optical coherence tomography (OCT) images of 12,242 eyes acquired from SS-1000 CASIA OCT Imaging Systems in multiple cent...
Autores principales: | Yousefi, Siamak, Yousefi, Ebrahim, Takahashi, Hidenori, Hayashi, Takahiko, Tampo, Hironobu, Inoda, Satoru, Arai, Yusuke, Asbell, Penny |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219768/ https://www.ncbi.nlm.nih.gov/pubmed/30399144 http://dx.doi.org/10.1371/journal.pone.0205998 |
Ejemplares similares
-
An AI model to estimate visual acuity based solely on cross-sectional OCT imaging of various diseases
por: Inoda, Satoru, et al.
Publicado: (2023) -
Half-dose photodynamic therapy for serous non-neovascular retinal pigment epithelial detachment
por: Inoda, Satoru, et al.
Publicado: (2019) -
Deep-learning-based AI for evaluating estimated nonperfusion areas requiring further examination in ultra-widefield fundus images
por: Inoda, Satoru, et al.
Publicado: (2022) -
Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy
por: Takahashi, Hidenori, et al.
Publicado: (2017) -
Identifying factors associated with fast visual field progression in patients with ocular hypertension based on unsupervised machine learning
por: Huang, Xiaoqin, et al.
Publicado: (2023)