Cargando…
A predictive epilepsy index based on probabilistic classification of interictal spike waveforms
Quantification of interictal spikes in EEG may provide insight on epilepsy disease burden, but manual quantification of spikes is time-consuming and subject to bias. We present a probability-based, automated method for the classification and quantification of interictal events, using EEG data from k...
Autores principales: | Pfammatter, Jesse A., Bergstrom, Rachel A., Wallace, Eli P., Maganti, Rama K., Jones, Mathew V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219811/ https://www.ncbi.nlm.nih.gov/pubmed/30399183 http://dx.doi.org/10.1371/journal.pone.0207158 |
Ejemplares similares
-
An automated, machine learning–based detection algorithm for spike‐wave discharges (SWDs) in a mouse model of absence epilepsy
por: Pfammatter, Jesse A., et al.
Publicado: (2019) -
Sleep‐wake characteristics in a mouse model of severe traumatic brain injury: Relation to posttraumatic epilepsy
por: Konduru, Sai Sruthi, et al.
Publicado: (2021) -
Spike Sorting by Joint Probabilistic Modeling of Neural Spike Trains and Waveforms
por: Matthews, Brett A., et al.
Publicado: (2014) -
Regional Differences in the Sensitivity of MEG for Interictal Spikes in Epilepsy
por: Huiskamp, Geertjan, et al.
Publicado: (2010) -
Waveform-based classification of dentate spikes
por: Santiago, Rodrigo M.M., et al.
Publicado: (2023)