Cargando…
Predicting how and when hidden neurons skew measured synaptic interactions
A major obstacle to understanding neural coding and computation is the fact that experimental recordings typically sample only a small fraction of the neurons in a circuit. Measured neural properties are skewed by interactions between recorded neurons and the “hidden” portion of the network. To prop...
Autores principales: | Brinkman, Braden A. W., Rieke, Fred, Shea-Brown, Eric, Buice, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219819/ https://www.ncbi.nlm.nih.gov/pubmed/30346943 http://dx.doi.org/10.1371/journal.pcbi.1006490 |
Ejemplares similares
-
How Do Efficient Coding Strategies Depend on Origins of Noise in Neural Circuits?
por: Brinkman, Braden A. W., et al.
Publicado: (2016) -
Noise- and stimulus-dependence of the optimal encoding nonlinearities in a simple ON/OFF retinal circuit model
por: Brinkman, Braden A W, et al.
Publicado: (2014) -
The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics
por: Iyer, Ramakrishnan, et al.
Publicado: (2013) -
When do microcircuits produce beyond-pairwise correlations?
por: Barreiro, Andrea K., et al.
Publicado: (2014) -
When are microcircuits well-modeled by maximum entropy methods?
por: Barreiro, Andrea K, et al.
Publicado: (2010)