Cargando…
Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles
Low temperature is an important abiotic stress that negatively affects morphological growth and fruit development in melon (Cucumis melo L.). Chilling stress at the seedling stage causes seedling injury and poor stand establishment, prolonging vegetative growth and delaying fruit harvest. In this st...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220089/ https://www.ncbi.nlm.nih.gov/pubmed/30429864 http://dx.doi.org/10.3389/fpls.2018.01577 |
_version_ | 1783368759784767488 |
---|---|
author | Hou, Juan Zhou, Ya-Feng Gao, Lu-Yin Wang, Yan-Ling Yang, Lu-Ming Zhu, Hua-Yu Wang, Ji-Ming Zhao, Sheng-Jie Ma, Chang-Sheng Sun, Shou-Ru Hu, Jian-Bin |
author_facet | Hou, Juan Zhou, Ya-Feng Gao, Lu-Yin Wang, Yan-Ling Yang, Lu-Ming Zhu, Hua-Yu Wang, Ji-Ming Zhao, Sheng-Jie Ma, Chang-Sheng Sun, Shou-Ru Hu, Jian-Bin |
author_sort | Hou, Juan |
collection | PubMed |
description | Low temperature is an important abiotic stress that negatively affects morphological growth and fruit development in melon (Cucumis melo L.). Chilling stress at the seedling stage causes seedling injury and poor stand establishment, prolonging vegetative growth and delaying fruit harvest. In this study, association mapping was performed for chilling tolerance at the seedling stage on an expanded melon core collection containing 212 diverse accessions by 272 SSRs and 27 CAPSs. Chilling tolerance of the melon seedlings was evaluated by calculating the chilling injury index (CII) in 2016 and 2017. Genetic diversity analysis of the whole accession panel presented two main groups, which corresponded to the two subspecies of C. melo, melo, and agrestis. Both the subspecies were sensitive to chilling but with agrestis being more tolerant. Genome-wide association study (GWAS) was conducted, respectively, on the whole panel and the two subspecies, totally detecting 51 loci that contributed to 74 marker-trait associations. Of these associations, 35 were detected in the whole panel, 21 in melo, and 18 in agrestis. About half of the associations identified in the two subspecies were also observed in the whole panel, and seven associations were shared by both the subspecies. CMCT505_Chr.1 was repeatedly detected in different populations with high phenotypic contribution and could be a key locus controlling chilling tolerance in C. melo. Nine loci were selected for evaluation of the phenotypic effects related to their alleles, which identified 11 elite alleles contributing to seedling chilling tolerance. Four such alleles existed in both the subspecies and six in either of the two subspecies. Analysis of 20 parental combinations for their allelic status and phenotypic values showed that the elite alleles collectively contributed to enhancement of the chilling tolerance. Tagging the loci responsible for chilling tolerance may simultaneously favor dissecting the complex adaptability traits and elevate the efficiency to improve chilling tolerance using marker-assisted selection in melon. |
format | Online Article Text |
id | pubmed-6220089 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-62200892018-11-14 Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles Hou, Juan Zhou, Ya-Feng Gao, Lu-Yin Wang, Yan-Ling Yang, Lu-Ming Zhu, Hua-Yu Wang, Ji-Ming Zhao, Sheng-Jie Ma, Chang-Sheng Sun, Shou-Ru Hu, Jian-Bin Front Plant Sci Plant Science Low temperature is an important abiotic stress that negatively affects morphological growth and fruit development in melon (Cucumis melo L.). Chilling stress at the seedling stage causes seedling injury and poor stand establishment, prolonging vegetative growth and delaying fruit harvest. In this study, association mapping was performed for chilling tolerance at the seedling stage on an expanded melon core collection containing 212 diverse accessions by 272 SSRs and 27 CAPSs. Chilling tolerance of the melon seedlings was evaluated by calculating the chilling injury index (CII) in 2016 and 2017. Genetic diversity analysis of the whole accession panel presented two main groups, which corresponded to the two subspecies of C. melo, melo, and agrestis. Both the subspecies were sensitive to chilling but with agrestis being more tolerant. Genome-wide association study (GWAS) was conducted, respectively, on the whole panel and the two subspecies, totally detecting 51 loci that contributed to 74 marker-trait associations. Of these associations, 35 were detected in the whole panel, 21 in melo, and 18 in agrestis. About half of the associations identified in the two subspecies were also observed in the whole panel, and seven associations were shared by both the subspecies. CMCT505_Chr.1 was repeatedly detected in different populations with high phenotypic contribution and could be a key locus controlling chilling tolerance in C. melo. Nine loci were selected for evaluation of the phenotypic effects related to their alleles, which identified 11 elite alleles contributing to seedling chilling tolerance. Four such alleles existed in both the subspecies and six in either of the two subspecies. Analysis of 20 parental combinations for their allelic status and phenotypic values showed that the elite alleles collectively contributed to enhancement of the chilling tolerance. Tagging the loci responsible for chilling tolerance may simultaneously favor dissecting the complex adaptability traits and elevate the efficiency to improve chilling tolerance using marker-assisted selection in melon. Frontiers Media S.A. 2018-10-31 /pmc/articles/PMC6220089/ /pubmed/30429864 http://dx.doi.org/10.3389/fpls.2018.01577 Text en Copyright © 2018 Hou, Zhou, Gao, Wang, Yang, Zhu, Wang, Zhao, Ma, Sun and Hu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Hou, Juan Zhou, Ya-Feng Gao, Lu-Yin Wang, Yan-Ling Yang, Lu-Ming Zhu, Hua-Yu Wang, Ji-Ming Zhao, Sheng-Jie Ma, Chang-Sheng Sun, Shou-Ru Hu, Jian-Bin Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles |
title | Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles |
title_full | Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles |
title_fullStr | Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles |
title_full_unstemmed | Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles |
title_short | Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles |
title_sort | dissecting the genetic architecture of melon chilling tolerance at the seedling stage by association mapping and identification of the elite alleles |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220089/ https://www.ncbi.nlm.nih.gov/pubmed/30429864 http://dx.doi.org/10.3389/fpls.2018.01577 |
work_keys_str_mv | AT houjuan dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT zhouyafeng dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT gaoluyin dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT wangyanling dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT yangluming dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT zhuhuayu dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT wangjiming dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT zhaoshengjie dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT machangsheng dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT sunshouru dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles AT hujianbin dissectingthegeneticarchitectureofmelonchillingtoleranceattheseedlingstagebyassociationmappingandidentificationoftheelitealleles |