Cargando…
Biological plausibility and stochasticity in scalable VO(2) active memristor neurons
Neuromorphic networks of artificial neurons and synapses can solve computationally hard problems with energy efficiencies unattainable for von Neumann architectures. For image processing, silicon neuromorphic processors outperform graphic processing units in energy efficiency by a large margin, but...
Autores principales: | Yi, Wei, Tsang, Kenneth K., Lam, Stephen K., Bai, Xiwei, Crowell, Jack A., Flores, Elias A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220189/ https://www.ncbi.nlm.nih.gov/pubmed/30405124 http://dx.doi.org/10.1038/s41467-018-07052-w |
Ejemplares similares
-
A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors
por: Yue, Kun, et al.
Publicado: (2019) -
Theory and experimental verification of configurable computing with stochastic memristors
por: Naous, Rawan, et al.
Publicado: (2021) -
Stochastic Computing Emulation of Memristor Cellular Nonlinear Networks
por: Camps, Oscar, et al.
Publicado: (2021) -
Sputtering-deposited amorphous SrVO(x)-based memristor for use in neuromorphic computing
por: Lee, Tae-Ju, et al.
Publicado: (2020) -
Scalable VoIP mobility: integration and deployment
por: Epstein, Joseph
Publicado: (2009)