Cargando…
Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks
Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical practice. The purpose of this paper is to present a...
Autores principales: | Deniz, Cem M., Xiang, Siyuan, Hallyburton, R. Spencer, Welbeck, Arakua, Babb, James S., Honig, Stephen, Cho, Kyunghyun, Chang, Gregory |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220200/ https://www.ncbi.nlm.nih.gov/pubmed/30405145 http://dx.doi.org/10.1038/s41598-018-34817-6 |
Ejemplares similares
-
ST-V-Net: incorporating shape prior into convolutional neural networks for proximal femur segmentation
por: Zhao, Chen, et al.
Publicado: (2021) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Using Deep Convolutional Neural Networks for Neonatal Brain Image Segmentation
por: Ding, Yang, et al.
Publicado: (2020) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sadanandan, Sajith Kecheril, et al.
Publicado: (2017) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020)