Cargando…
Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa
MexAB-OprM and MexEF-OprN are Pseudomonas aeruginosa efflux pumps involved in the development of antibiotic resistance. Several studies developed with laboratory strains or using a few clinical isolates have reported that the regulation system of MexEF-OprN is involved in the final levels of MexAB-O...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220265/ https://www.ncbi.nlm.nih.gov/pubmed/30405166 http://dx.doi.org/10.1038/s41598-018-34694-z |
Sumario: | MexAB-OprM and MexEF-OprN are Pseudomonas aeruginosa efflux pumps involved in the development of antibiotic resistance. Several studies developed with laboratory strains or using a few clinical isolates have reported that the regulation system of MexEF-OprN is involved in the final levels of MexAB-OprM expression. Therefore, this study was aimed to determine the interplay between MexAB-OprM and MexEF-OprN in 90 out of 190 P. aeruginosa clinical isolates with an efflux pump overexpression phenotype. Regarding oprD, 33% (30/90) of isolates displayed relevant modifications (RM) defined as frameshift or premature stop, both related to carbapenem resistance. On the other hand, 33% of the isolates displayed RM in nalC, nalD or mexR, which were significantly associated with multidrug resistance (MDR), non-susceptibility to carbapenems, OprD alterations and strong biofilm production. Meanwhile, the RM in MexS were associated with presence of pigment (p = 0.004). Otherwise, when all the regulators were analysed together, the association between RM in MexAB-OprM regulators and MDR was only significant (p = 0.039) when mexS was the wild type. These data show the modulatory effect of MexEF-OprN on MexAB-OprM in a clinical population of P. aeruginosa. Further studies may contribute to design of novel molecules acting on this interplay to fight against antimicrobial resistance. |
---|