Cargando…

Curvature induced quantum phase transitions in an electron-hole system

In this work, we study the effect of introducing a periodic curvature on nanostructures, and demonstrate that the curvature can lead to a transition from a topologically trivial state to a non-trivial state. We first present the Hamiltonian for an arbitrarily curved nanostructure, and introduce a nu...

Descripción completa

Detalles Bibliográficos
Autores principales: Siu, Zhuo Bin, Chang, Jian-Yuan, Tan, Seng Ghee, Jalil, Mansoor B. A., Chang, Ching-Ray
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220275/
https://www.ncbi.nlm.nih.gov/pubmed/30405167
http://dx.doi.org/10.1038/s41598-018-34903-9
Descripción
Sumario:In this work, we study the effect of introducing a periodic curvature on nanostructures, and demonstrate that the curvature can lead to a transition from a topologically trivial state to a non-trivial state. We first present the Hamiltonian for an arbitrarily curved nanostructure, and introduce a numerical scheme for calculating the bandstructure of a periodically curved nanostructure. Using this scheme, we calculate the bandstructure for a sinusoidally curved two-dimensional electron gas. We show that the curvature can lead to a partner switching reminiscent of a topological phase transition at the time reversal invariant momenta. We then study the Bernevig-Hughes-Zhang (BHZ) Hamiltonian for a two-dimensional quantum well. We show that introducing a curvature can lead to the emergence of topological surface states.