Cargando…
A Deep Neural Network Model using Random Forest to Extract Feature Representation for Gene Expression Data Classification
In predictive model development, gene expression data is associated with the unique challenge that the number of samples (n) is much smaller than the amount of features (p). This “n ≪ p” property has prevented classification of gene expression data from deep learning techniques, which have been prov...
Autores principales: | Kong, Yunchuan, Yu, Tianwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220289/ https://www.ncbi.nlm.nih.gov/pubmed/30405137 http://dx.doi.org/10.1038/s41598-018-34833-6 |
Ejemplares similares
-
Deep Cooperative Spectrum Sensing Based on Residual Neural Network Using Feature Extraction and Random Forest Classifier
por: Valadão, Myke D. M., et al.
Publicado: (2021) -
Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network
por: Steven Eyobu, Odongo, et al.
Publicado: (2018) -
Classification of Biomedical Texts for Cardiovascular Diseases with Deep Neural Network Using a Weighted Feature Representation Method
por: Ahmed, Nizar, et al.
Publicado: (2020) -
Music Classification Method Using Big Data Feature Extraction and Neural Networks
por: Li, Xiabin, et al.
Publicado: (2022) -
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features
por: Horikawa, Tomoyasu, et al.
Publicado: (2017)