Cargando…
Investigation of femtosecond laser induced ripple formation on copper for varying incident angle
The hydrodynamic mechanisms associated with the formation of femtosecond laser induced ripples on copper for two angles of incidence are reported. Laser pulse length used for this work is 35 fs. A revised two-temperature model is presented that comprises transient changes of optical characteristics...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220345/ https://www.ncbi.nlm.nih.gov/pubmed/30416867 http://dx.doi.org/10.1063/1.5020029 |
_version_ | 1783368809076228096 |
---|---|
author | Zuhlke, Craig A. Tsibidis, George D. Anderson, Troy Stratakis, Emmanuel Gogos, George Alexander, Dennis R. |
author_facet | Zuhlke, Craig A. Tsibidis, George D. Anderson, Troy Stratakis, Emmanuel Gogos, George Alexander, Dennis R. |
author_sort | Zuhlke, Craig A. |
collection | PubMed |
description | The hydrodynamic mechanisms associated with the formation of femtosecond laser induced ripples on copper for two angles of incidence are reported. Laser pulse length used for this work is 35 fs. A revised two-temperature model is presented that comprises transient changes of optical characteristics during the irradiation with femtosecond pulses to model relaxation processes and thermal response in bulk copper. The theoretical model takes into account the fluid flow dynamics that result in ripple periods shorter than the wavelength of the surface plasmon polaritons. Theoretical and experimental results are reported for incident angles of 0° and 45° relative to the surface normal. There is agreement between the experimentally measured and the theoretically predicted ripple periodicity for 50 pulses at 0° incidence. By contrast, for 100 pulses at 0° incidence, and 50 and 100 pulses at 45° incidence, the experimentally measured ripples have a larger period than the one predicted by the model while the trends in period with increased incident angle, and increased fluence are in agreement between the experimental and the theoretical results. |
format | Online Article Text |
id | pubmed-6220345 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-62203452019-01-10 Investigation of femtosecond laser induced ripple formation on copper for varying incident angle Zuhlke, Craig A. Tsibidis, George D. Anderson, Troy Stratakis, Emmanuel Gogos, George Alexander, Dennis R. AIP Adv Article The hydrodynamic mechanisms associated with the formation of femtosecond laser induced ripples on copper for two angles of incidence are reported. Laser pulse length used for this work is 35 fs. A revised two-temperature model is presented that comprises transient changes of optical characteristics during the irradiation with femtosecond pulses to model relaxation processes and thermal response in bulk copper. The theoretical model takes into account the fluid flow dynamics that result in ripple periods shorter than the wavelength of the surface plasmon polaritons. Theoretical and experimental results are reported for incident angles of 0° and 45° relative to the surface normal. There is agreement between the experimentally measured and the theoretically predicted ripple periodicity for 50 pulses at 0° incidence. By contrast, for 100 pulses at 0° incidence, and 50 and 100 pulses at 45° incidence, the experimentally measured ripples have a larger period than the one predicted by the model while the trends in period with increased incident angle, and increased fluence are in agreement between the experimental and the theoretical results. 2018-01-10 2018 /pmc/articles/PMC6220345/ /pubmed/30416867 http://dx.doi.org/10.1063/1.5020029 Text en All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zuhlke, Craig A. Tsibidis, George D. Anderson, Troy Stratakis, Emmanuel Gogos, George Alexander, Dennis R. Investigation of femtosecond laser induced ripple formation on copper for varying incident angle |
title | Investigation of femtosecond laser induced ripple formation on copper for varying incident angle |
title_full | Investigation of femtosecond laser induced ripple formation on copper for varying incident angle |
title_fullStr | Investigation of femtosecond laser induced ripple formation on copper for varying incident angle |
title_full_unstemmed | Investigation of femtosecond laser induced ripple formation on copper for varying incident angle |
title_short | Investigation of femtosecond laser induced ripple formation on copper for varying incident angle |
title_sort | investigation of femtosecond laser induced ripple formation on copper for varying incident angle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220345/ https://www.ncbi.nlm.nih.gov/pubmed/30416867 http://dx.doi.org/10.1063/1.5020029 |
work_keys_str_mv | AT zuhlkecraiga investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle AT tsibidisgeorged investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle AT andersontroy investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle AT stratakisemmanuel investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle AT gogosgeorge investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle AT alexanderdennisr investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle |