Cargando…

Investigation of femtosecond laser induced ripple formation on copper for varying incident angle

The hydrodynamic mechanisms associated with the formation of femtosecond laser induced ripples on copper for two angles of incidence are reported. Laser pulse length used for this work is 35 fs. A revised two-temperature model is presented that comprises transient changes of optical characteristics...

Descripción completa

Detalles Bibliográficos
Autores principales: Zuhlke, Craig A., Tsibidis, George D., Anderson, Troy, Stratakis, Emmanuel, Gogos, George, Alexander, Dennis R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220345/
https://www.ncbi.nlm.nih.gov/pubmed/30416867
http://dx.doi.org/10.1063/1.5020029
_version_ 1783368809076228096
author Zuhlke, Craig A.
Tsibidis, George D.
Anderson, Troy
Stratakis, Emmanuel
Gogos, George
Alexander, Dennis R.
author_facet Zuhlke, Craig A.
Tsibidis, George D.
Anderson, Troy
Stratakis, Emmanuel
Gogos, George
Alexander, Dennis R.
author_sort Zuhlke, Craig A.
collection PubMed
description The hydrodynamic mechanisms associated with the formation of femtosecond laser induced ripples on copper for two angles of incidence are reported. Laser pulse length used for this work is 35 fs. A revised two-temperature model is presented that comprises transient changes of optical characteristics during the irradiation with femtosecond pulses to model relaxation processes and thermal response in bulk copper. The theoretical model takes into account the fluid flow dynamics that result in ripple periods shorter than the wavelength of the surface plasmon polaritons. Theoretical and experimental results are reported for incident angles of 0° and 45° relative to the surface normal. There is agreement between the experimentally measured and the theoretically predicted ripple periodicity for 50 pulses at 0° incidence. By contrast, for 100 pulses at 0° incidence, and 50 and 100 pulses at 45° incidence, the experimentally measured ripples have a larger period than the one predicted by the model while the trends in period with increased incident angle, and increased fluence are in agreement between the experimental and the theoretical results.
format Online
Article
Text
id pubmed-6220345
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-62203452019-01-10 Investigation of femtosecond laser induced ripple formation on copper for varying incident angle Zuhlke, Craig A. Tsibidis, George D. Anderson, Troy Stratakis, Emmanuel Gogos, George Alexander, Dennis R. AIP Adv Article The hydrodynamic mechanisms associated with the formation of femtosecond laser induced ripples on copper for two angles of incidence are reported. Laser pulse length used for this work is 35 fs. A revised two-temperature model is presented that comprises transient changes of optical characteristics during the irradiation with femtosecond pulses to model relaxation processes and thermal response in bulk copper. The theoretical model takes into account the fluid flow dynamics that result in ripple periods shorter than the wavelength of the surface plasmon polaritons. Theoretical and experimental results are reported for incident angles of 0° and 45° relative to the surface normal. There is agreement between the experimentally measured and the theoretically predicted ripple periodicity for 50 pulses at 0° incidence. By contrast, for 100 pulses at 0° incidence, and 50 and 100 pulses at 45° incidence, the experimentally measured ripples have a larger period than the one predicted by the model while the trends in period with increased incident angle, and increased fluence are in agreement between the experimental and the theoretical results. 2018-01-10 2018 /pmc/articles/PMC6220345/ /pubmed/30416867 http://dx.doi.org/10.1063/1.5020029 Text en All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zuhlke, Craig A.
Tsibidis, George D.
Anderson, Troy
Stratakis, Emmanuel
Gogos, George
Alexander, Dennis R.
Investigation of femtosecond laser induced ripple formation on copper for varying incident angle
title Investigation of femtosecond laser induced ripple formation on copper for varying incident angle
title_full Investigation of femtosecond laser induced ripple formation on copper for varying incident angle
title_fullStr Investigation of femtosecond laser induced ripple formation on copper for varying incident angle
title_full_unstemmed Investigation of femtosecond laser induced ripple formation on copper for varying incident angle
title_short Investigation of femtosecond laser induced ripple formation on copper for varying incident angle
title_sort investigation of femtosecond laser induced ripple formation on copper for varying incident angle
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220345/
https://www.ncbi.nlm.nih.gov/pubmed/30416867
http://dx.doi.org/10.1063/1.5020029
work_keys_str_mv AT zuhlkecraiga investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle
AT tsibidisgeorged investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle
AT andersontroy investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle
AT stratakisemmanuel investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle
AT gogosgeorge investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle
AT alexanderdennisr investigationoffemtosecondlaserinducedrippleformationoncopperforvaryingincidentangle