Cargando…
Effects of Kinesiology Tape on Non-linear Center of Mass Dispersion During the Y Balance Test
Static taping of the ankle or knee joint is a common method of reducing risk of injury by providing mechanical stability. An alternative taping technique employs kinesiology tape, which has the additional benefit of improving functionality by stimulating proprioception. There is substantial disagree...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220351/ https://www.ncbi.nlm.nih.gov/pubmed/30429799 http://dx.doi.org/10.3389/fphys.2018.01527 |
Sumario: | Static taping of the ankle or knee joint is a common method of reducing risk of injury by providing mechanical stability. An alternative taping technique employs kinesiology tape, which has the additional benefit of improving functionality by stimulating proprioception. There is substantial disagreement whether kinesiology tape shows significant differences in proprioception and postural stability as compared to rigid/static tape when applied at the lower limb. The current study investigated the effects of kinesiology tape and static tape during a Y Balance Test on center of mass as an indicator for postural stability. Forty-one individuals, free of injury, performed the Y Balance Test under the three conditions; no tape, kinesiology tape, and static tape applied at the lower limb to the quadriceps, triceps surae and ankle joint. All participants completed the Y Balance Test to determine whether any significant differences could be observed using center of mass movement as a surrogate measure for balance and proprioception. The Minkowski-Bouligand and box-counting fractal dimension analyses were used as measures of the dynamic changes in the center of mass whilst undertaking the Y Balance Test. Statistical analyses included the Kruskal Wallis test to allow for non-normally distributed data and a Bonferroni corrected pairwise T-test as a post hoc test to ascertain pairwise differences between the three taping conditions. Significance was set at 0.05. The fractal analyses of the dynamic changes in center of mass showed significant differences between the control and both the static tape and kinesiology tape groups (p = 0.021 and 0.009, respectively). The current study developed a novel measure of dynamic changes in the center of mass during a set movement that indicated real-time processing effects during a balance task associated with the type of taping used to enhance postural stability. |
---|