Cargando…

Fully Automated Delineation of Gross Tumor Volume for Head and Neck Cancer on PET-CT Using Deep Learning: A Dual-Center Study

PURPOSE: In this study, we proposed an automated deep learning (DL) method for head and neck cancer (HNC) gross tumor volume (GTV) contouring on positron emission tomography-computed tomography (PET-CT) images. MATERIALS AND METHODS: PET-CT images were collected from 22 newly diagnosed HNC patients,...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Bin, Chen, Zhewei, Wu, Po-Man, Ye, Yufeng, Feng, Shi-Ting, Wong, Ching-Yee Oliver, Zheng, Liyun, Liu, Yong, Wang, Tianfu, Li, Qiaoliang, Huang, Bingsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220410/
https://www.ncbi.nlm.nih.gov/pubmed/30473644
http://dx.doi.org/10.1155/2018/8923028
Descripción
Sumario:PURPOSE: In this study, we proposed an automated deep learning (DL) method for head and neck cancer (HNC) gross tumor volume (GTV) contouring on positron emission tomography-computed tomography (PET-CT) images. MATERIALS AND METHODS: PET-CT images were collected from 22 newly diagnosed HNC patients, of whom 17 (Database 1) and 5 (Database 2) were from two centers, respectively. An oncologist and a radiologist decided the gold standard of GTV manually by consensus. We developed a deep convolutional neural network (DCNN) and trained the network based on the two-dimensional PET-CT images and the gold standard of GTV in the training dataset. We did two experiments: Experiment 1, with Database 1 only, and Experiment 2, with both Databases 1 and 2. In both Experiment 1 and Experiment 2, we evaluated the proposed method using a leave-one-out cross-validation strategy. We compared the median results in Experiment 2 (GTVa) with the performance of other methods in the literature and with the gold standard (GTVm). RESULTS: A tumor segmentation task for a patient on coregistered PET-CT images took less than one minute. The dice similarity coefficient (DSC) of the proposed method in Experiment 1 and Experiment 2 was 0.481∼0.872 and 0.482∼0.868, respectively. The DSC of GTVa was better than that in previous studies. A high correlation was found between GTVa and GTVm (R = 0.99, P < 0.001). The median volume difference (%) between GTVm and GTVa was 10.9%. The median values of DSC, sensitivity, and precision of GTVa were 0.785, 0.764, and 0.789, respectively. CONCLUSION: A fully automatic GTV contouring method for HNC based on DCNN and PET-CT from dual centers has been successfully proposed with high accuracy and efficiency. Our proposed method is of help to the clinicians in HNC management.