Cargando…
Fully Automated Delineation of Gross Tumor Volume for Head and Neck Cancer on PET-CT Using Deep Learning: A Dual-Center Study
PURPOSE: In this study, we proposed an automated deep learning (DL) method for head and neck cancer (HNC) gross tumor volume (GTV) contouring on positron emission tomography-computed tomography (PET-CT) images. MATERIALS AND METHODS: PET-CT images were collected from 22 newly diagnosed HNC patients,...
Autores principales: | Huang, Bin, Chen, Zhewei, Wu, Po-Man, Ye, Yufeng, Feng, Shi-Ting, Wong, Ching-Yee Oliver, Zheng, Liyun, Liu, Yong, Wang, Tianfu, Li, Qiaoliang, Huang, Bingsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220410/ https://www.ncbi.nlm.nih.gov/pubmed/30473644 http://dx.doi.org/10.1155/2018/8923028 |
Ejemplares similares
-
Deep learning-based auto-delineation of gross tumour volumes and involved nodes in PET/CT images of head and neck cancer patients
por: Moe, Yngve Mardal, et al.
Publicado: (2021) -
Evaluation of PET/MRI for Tumor Volume Delineation for Head and Neck Cancer
por: Wang, Kyle, et al.
Publicado: (2017) -
A quantitative comparison of gross tumour volumes delineated on [18F]-FDG PET-CT scan and CECT scan in head and neck cancers
por: Venkada, Manickam G, et al.
Publicado: (2012) -
Multi-Institutional Validation of Two-Streamed Deep Learning Method for Automated Delineation of Esophageal Gross Tumor Volume Using Planning CT and FDG-PET/CT
por: Ye, Xianghua, et al.
Publicado: (2022) -
Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks
por: Ye, Yufeng, et al.
Publicado: (2020)