Cargando…
A Bayesian framework for health economic evaluation in studies with missing data
Health economics studies with missing data are increasingly using approaches such as multiple imputation that assume that the data are “missing at random.” This assumption is often questionable, as—even given the observed data—the probability that data are missing may reflect the true, unobserved ou...
Autores principales: | Mason, Alexina J., Gomes, Manuel, Grieve, Richard, Carpenter, James R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220766/ https://www.ncbi.nlm.nih.gov/pubmed/29969834 http://dx.doi.org/10.1002/hec.3793 |
Ejemplares similares
-
A framework for extending trial design to facilitate missing data sensitivity analyses
por: Mason, Alexina J., et al.
Publicado: (2020) -
Development of a practical approach to expert elicitation for randomised controlled trials with missing health outcomes: Application to the IMPROVE trial
por: Mason, Alexina J, et al.
Publicado: (2017) -
Sensitivity Analysis for Not-at-Random Missing Data in Trial-Based Cost-Effectiveness Analysis: A Tutorial
por: Leurent, Baptiste, et al.
Publicado: (2018) -
Correction to: Sensitivity Analysis for Not-at-Random Missing Data in Trial-Based Cost-Effectiveness Analysis: A Tutorial
por: Leurent, Baptiste, et al.
Publicado: (2019) -
Missing data: A statistical framework for practice
por: Carpenter, James R., et al.
Publicado: (2021)