Cargando…
Multiple imputation in Cox regression when there are time‐varying effects of covariates
In Cox regression, it is important to test the proportional hazards assumption and sometimes of interest in itself to study time‐varying effects (TVEs) of covariates. TVEs can be investigated with log hazard ratios modelled as a function of time. Missing data on covariates are common and multiple im...
Autores principales: | Keogh, Ruth H., Morris, Tim P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220767/ https://www.ncbi.nlm.nih.gov/pubmed/30014575 http://dx.doi.org/10.1002/sim.7842 |
Ejemplares similares
-
Imputing missing covariate values for the Cox model
por: White, Ian R, et al.
Publicado: (2009) -
Population‐calibrated multiple imputation for a binary/categorical covariate in categorical regression models
por: Pham, Tra My, et al.
Publicado: (2018) -
Bayesian imputation of time-varying covariates in linear mixed
models
por: Erler, Nicole S, et al.
Publicado: (2017) -
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014) -
Using fractional polynomials and restricted cubic splines to model non‐proportional hazards or time‐varying covariate effects in the Cox regression model
por: Austin, Peter C., et al.
Publicado: (2021)