Cargando…
A machine‐learned analysis of human gene polymorphisms modulating persisting pain points to major roles of neuroimmune processes
BACKGROUND: Human genetic research has implicated functional variants of more than one hundred genes in the modulation of persisting pain. Artificial intelligence and machine‐learning techniques may combine this knowledge with results of genetic research gathered in any context, which permits the id...
Autores principales: | Kringel, D., Lippmann, C., Parnham, M.J., Kalso, E., Ultsch, A., Lötsch, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220816/ https://www.ncbi.nlm.nih.gov/pubmed/29923268 http://dx.doi.org/10.1002/ejp.1270 |
Ejemplares similares
-
Machine-learning-derived classifier predicts absence of persistent pain after breast cancer surgery with high accuracy
por: Lötsch, Jörn, et al.
Publicado: (2018) -
Development of an AmpliSeq(TM) Panel for Next-Generation Sequencing of a Set of Genetic Predictors of Persisting Pain
por: Kringel, Dario, et al.
Publicado: (2018) -
Machine-learned analysis of global and glial/opioid intersection–related DNA methylation in patients with persistent pain after breast cancer surgery
por: Kringel, Dario, et al.
Publicado: (2019) -
Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective
por: Lötsch, Jörn, et al.
Publicado: (2017) -
Artificial intelligence and machine learning in pain research: a data scientometric analysis
por: Lötsch, Jörn, et al.
Publicado: (2022)