Cargando…

Targeting of Liver Mannan-Binding Lectin–Associated Serine Protease-3 with RNA Interference Ameliorates Disease in a Mouse Model of Rheumatoid Arthritis

Mannan-binding lectin–associated serine protease 3 (MASP-3) regulates the alternative pathway of complement and is predominantly synthesized in the liver. The role of liver-derived MASP-3 in the pathogenesis of rheumatoid arthritis (RA) is unknown. We hypothesized that liver-derived MASP-3 is essent...

Descripción completa

Detalles Bibliográficos
Autores principales: Banda, Nirmal K., Desai, Dhruv, Scheinman, Robert I., Pihl, Rasmus, Sekine, Hideharu, Fujita, Teizo, Sharma, Vibha, Hansen, Annette G., Garred, Peter, Thiel, Steffen, Borodovsky, Anna, Holers, V. Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220895/
https://www.ncbi.nlm.nih.gov/pubmed/30417171
http://dx.doi.org/10.4049/immunohorizons.1800053
Descripción
Sumario:Mannan-binding lectin–associated serine protease 3 (MASP-3) regulates the alternative pathway of complement and is predominantly synthesized in the liver. The role of liver-derived MASP-3 in the pathogenesis of rheumatoid arthritis (RA) is unknown. We hypothesized that liver-derived MASP-3 is essential for the development of joint damage and that targeted inhibition of MASP-3 in the liver can attenuate arthritis. We used MASP-3–specific small interfering RNAs (siRNAs) conjugated to N-acetylgalactosamine (GalNAc) to specifically target the liver via asialoglycoprotein receptors. Active GalNAc–MASP3–siRNA conjugates were identified, and in vivo silencing of liver MASP-3 mRNA was demonstrated in healthy mice. The s.c. treatment with GalNAc–MASP-3–siRNAs specifically decreased the expression of MASP-3 in the liver and the level of MASP-3 protein in circulation of mice without affecting the levels of the other spliced products. In mice with collagen Ab–induced arthritis, s.c. administration of GalNAc–MASP-3–siRNA decreased the clinical disease activity score to 50% of controls, with decrease in histopathology scores and MASP-3 deposition. To confirm the ability to perform MASP-3 gene silencing in human cells, we generated a lentivirus expressing a short hairpin RNA specific for human MASP-3 mRNA. This procedure not only eliminated the short-term (at day 15) expression of MASP-3 in HepG2 and T98G cell lines but also diminished the long-term (at day 60) synthesis of MASP-3 protein in T98G cells. Our study demonstrates that isoform-specific silencing of MASP-3 in vivo modifies disease activity in a mouse model of RA and suggests that liver-directed MASP3 silencing may be a therapeutic approach in human RA.